
Howto: Implementing
LLVM Integrated Assembler

A Simple Guide

Simon Cook
Embecosm

Application Note 10. Issue 1
Publication date October 2012

http://www.embecosm.com

ii Copyright © 2012 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Embecosm (www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com

iii Copyright © 2012 Embecosm Limited

Table of Contents
1. Introduction ... 1

1.1. Target Audience ... 1
1.2. Examples ... 1
1.3. Further Information ... 1
1.4. About Embecosm Application Notes ... 1

2. Integrated Assembler within LLVM ... 2
2.1. llvm-mc ... 2

3. Implementing Assembly Parser Support ... 3
3.1. LLVM Build System ... 3
3.2. archASMParser Class .. 5
3.3. archOperand Structure ... 5
3.4. Matching and Emitting Instructions ... 7
3.5. Parsing Registers and Immediates .. 7
3.6. Parsing Operands .. 8
3.7. Parsing Instructions ... 9
3.8. Testing ... 11

4. Implementing Instruction Encoding .. 12
4.1. Build System ... 12
4.2. Registration .. 12
4.3. Register Support Function ... 12
4.4. Encoding Instructions .. 13
4.5. Encoding Custom Operands ... 15
4.6. Testing ... 16

5. Implementing Instruction Decoding .. 17
5.1. TableGen Requirements ... 17
5.2. Build System ... 17
5.3. Integration ... 17
5.4. Disassembler .. 18
5.5. Variable Length Instructions .. 19
5.6. Decoding Register Classes .. 19
5.7. Decoding Custom Operands ... 20
5.8. Testing ... 20

6. Implementing ELF Object Writing ... 22
6.1. Build System ... 22
6.2. Defining Fixups and Relocations .. 22
6.3. Assembly Backend ... 23
6.4. ELF Object Writer .. 26
6.5. Testing ... 28

Glossary .. 30
References .. 31

iv Copyright © 2012 Embecosm Limited

List of Figures
3.1. LLVMBuild.txt ... 3
3.2. CMakeLists.txt .. 4
3.3. Makefile .. 4
3.4. CMakeLists.txt .. 4
3.5. Makefile .. 4

1 Copyright © 2012 Embecosm Limited

Chapter 1. Introduction
The LLVM machine code project is part of the LLVM compiler suite and designed for aiding in
the assembly and disassembly of native instructions as well as the handling of object files.

1.1. Target Audience
This guide is for developers who are already comfortable with the LLVM build system and the
TableGen language/tool for the creation and manipulation of target-specific parameters.

This guide assumes that the basic LLVM toolchain has already been implemented and is
functioning for the target architecture using a MC (LLVM Machine Code) based instruction
printer. (i.e. LLVM is already capable of producing assembly files for the target architecture
via llc.)

The detail of steps here have been tested using the (at time of writing) latest development
version of LLVM for the OpenRISC 1000, the source of which can be found on GitHub at
www.github.com/openrisc/llvm-or1k.

1.2. Examples
This application note includes examples from the LLVM backend for OpenRISC 1000 ,
originally written by Stefan Kristiansson and extended by Simon Cook of Embecosm for the
implementation of the integrated assembler.

Examples used are definitions of instructions, methods for their encoding and decoding,
written by the same authors.

At the time of writing the OpenRISC 1000 implementation is not part of the main LLVM
distribution, but the source can be downloaded and compiled from www.github.com/
openrisc/llvm-or1k.

Instructions for building and testing can be found in the file README.or1k.

General examples of source code, file names, etc. will use the term arch in italics. An
implementation of the LLVM assembler would replace this with the name of the target
directory. For example, with the case of OpenRISC 1000 , arch would be replaced with OR1K.

1.3. Further Information
The main source of information regarding LLVM is the LLVM website (www.llvm.org). This
website hosts the main documentation (www.llvm.org/docs), including instructions on how to
implement various parts of a LLVM backend.

In addition, the LLVM API documentation at www.llvm.org/doxygen contains useful
information about available APIs and in many cases is the best source for information.

There is also a mailing list llvmdev@cs.uicu.edu and IRC channel #llvm on irc.oftc.net where
questions about LLVM development can be asked.

1.4. About Embecosm Application Notes
Embecosm publishes a series of free and open source application notes, designed to help
working engineers with practical problems.

Feedback is always welcome, which should be sent to <info@embecosm.com>.

https://www.github.com/openrisc/llvm-or1k
https://www.github.com/openrisc/llvm-or1k
https://www.github.com/openrisc/llvm-or1k
http://www.llvm.org
http://www.llvm.org/docs
http://www.llvm.org/doxygen
mailto:llvmdev@cs.uicu.edu

2 Copyright © 2012 Embecosm Limited

Chapter 2. Integrated Assembler within LLVM
The integrated assembler when used with the rest of the LLVM system allows source to be
compiled directly to a native object file without the need of outputting assembly instructions
to a file and then parsing them back in order to encode them.

This provides the benefit of faster compiling, and when combined with the C language compiler
clang, allows C/C++ to native object file compilation in one step ready for linking.

This application note focuses on the LLVM assembler in the case where its intended use is as
part of the clang C compiler. As such, assembly parsing, encoding and decoding is restricted to
the case where purely instructions are given to the llvm-mc tool described below. It is however
possible to extend the assembler to accept and reconstruct assembly directives, allowing llvm-
mc to behave more like a standalone compiler.

No special steps/changes are required to allow clang to use the integrated assembler, once
it is set up and functioning, it can be invoked by using the -integrated-as as one of the
arguments, alongside with the target architecture, as demonstrated below.

clang -target or1k -O3 -integrated-as helloworld.c

2.1. llvm-mc
The llvm-mc tool, described as the "LLVM machine code playground", is used for testing
components of a target's MC implementation. The main task this tool fulfills is to assemble
a .s file (via the -assemble command), disassemble strings of bytes (-disassemble), as well as
show the encoding of instructions and their internal representations (-show-encoding and -
show-inst respectively).

In order to determine the architecture, the parameter -arch=arch is used and -mattr=a1,+a2,-
a3 is used to enable and disable features of the processor required for instructions to be valid.

An example of the above for the OpenRISC 1000 architecture is the optional support for
multiplication and division instructions. To enable these, a command like the following would
be used.

llvm-mc -assemble -show-encoding -arch=or1k -mattr=+mul,+div input.s

3 Copyright © 2012 Embecosm Limited

Chapter 3. Implementing Assembly Parser
Support
The first component which needs to be implemented is support for parsing assembly files.
This allows llvm-mc to correctly read in assembly instructions and provide an internal
representation of these for encoding.

The assembly parser is configured as a separate library which has the initial target
implementation library as its parent. This library is placed in the lib/Target/arch/AsmParser
directory.

3.1. LLVM Build System
As with all libraries, the assembly parser library needs declaring within the build system so
that when compiled, the functionality this library provides is added.

This consists of a Makefile for when make is used for the build, a CMakeLists.txt file for
when cmake is used instead and a LLVMBuild.txt file for the rest of build system.

These files declare which libraries are required and need to be compiled first. In this case the
TableGen output for the architecture needs to be generated first so that function generated
can be used within the library.

For example, the build files for the OpenRISC 1000 implementation are as follows.

;===- ./lib/Target/OR1K/AsmParser/LLVMBuild.txt ----------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===--===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===--===;

[component_0]
type = Library
name = OR1KAsmParser
parent = OR1K
required_libraries = MC MCParser Support OR1KDesc OR1KInfo
add_to_library_groups = OR1K

Figure 3.1. LLVMBuild.txt

4 Copyright © 2012 Embecosm Limited

add_llvm_library(LLVMOR1KASMParser
 OR1KAsmParser.cpp
)

add_dependencies(LLVMOR1KAsmParser OR1KCommonTableGen)

Figure 3.2. CMakeLists.txt

##===- lib/Target/OR1K/AsmParser/Makefile ------------------*- Makefile -*-===##
#
The LLVM Compiler Infrastructure
#
This file is distributed under the University of Illinois Open Source
License. See LICENSE.TXT for details.
#
##===--===##
LEVEL = ../../../..
LIBRARYNAME = LLVMOR1KAsmParser

Hack: we need to include 'main' or1k target directory to grab private headers
CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..

include $(LEVEL)/Makefile.common

Figure 3.3. Makefile

The final parts of the build system that need modifying is adding the new library to its parent.

In the CMakeLists.txt file for the target, the TableGen assembly matcher needs to be generated
and the AsmParser directory added. The equivalent variables also need changing in the
Makefile. For OpenRISC 1000 this would be as follows.

tablegen(LLVM OR1KGenAsmMatcher.inc -gen-asm-matcher)
add_subdirectory(AsmParser)

Figure 3.4. CMakeLists.txt

 # Make sure that tblgen is run, first thing.
 BUILT_SOURCES = OR1KGenRegisterInfo.inc OR1KGenInstrInfo.inc \
- OR1KGenAsmWriter.inc OR1KGenDAGISel.inc \
+ OR1KGenAsmWriter.inc OR1KGenAsmMatcher.inc OR1KGenDAGISel.inc \
 OR1KGenSubtargetInfo.inc OR1KGenCallingConv.inc

-DIRS = InstPrinter TargetInfo MCTargetDesc
+DIRS = AsmParser InstPrinter TargetInfo MCTargetDesc

Figure 3.5. Makefile

5 Copyright © 2012 Embecosm Limited

Finally, in the LLVMBuild.txt file for the target library, the parameter has_parser is defined
as 1.

3.2. archASMParser Class

The assembly parser consists of one source file, archASMParser.cpp which contains the
archASMParser class, inheriting from MCTargetAsmParser in addition to a second class for
holding target-specific operand information.

Note
Information about this class can be found in LLVM's documentation at llvm.org/
docs/doxygen/html/classllvm_1_1MCTargetAsmParser.html

The primary class consists of the MatchAndEmitInstruction function which is called for each
instruction to be parsed, emitting out an internal representation of each instruction as well
as supporting functions which help it parse instruction operands.

It should be noted that the following two lines appear in the class declaration to import
functions generated by TableGen which will do most of the heavy lifting in the system.

#define GET_ASSEMBLER_HEADER
#include "archGenAsmMatcher.inc"

3.3. archOperand Structure

Before the instruction matcher can be created the archOperand structure must be defined.
This represents a parsed machine instruction, storing information about the types and
contents of its operands.

Note
This class inherits from MCParsedAsmOperand, whose API can be found at llvm.org/
docs/doxygen/html/classllvm_1_1MCParsedAsmOperand.html.

Within this structure is an enum and union which store the operand along with its type.

In the case for OpenRISC 1000 , these operand types are tokens, registers and immediate.
Similarly, SMLocs (source code locations) are stored for the start and stop locations of the
operand.

http://llvm.org/docs/doxygen/html/classllvm_1_1MCTargetAsmParser.html
http://llvm.org/docs/doxygen/html/classllvm_1_1MCTargetAsmParser.html
http://llvm.org/docs/doxygen/html/classllvm_1_1MCParsedAsmOperand.html
http://llvm.org/docs/doxygen/html/classllvm_1_1MCParsedAsmOperand.html

6 Copyright © 2012 Embecosm Limited

 enum KindTy {
 Token,
 Register,
 Immediate
 } Kind;

 SMLoc StartLoc, EndLoc;

 union {
 struct {
 const char *Data;
 unsigned Length;
 } Tok;
 struct {
 unsigned RegNum;
 } Reg;
 struct {
 const MCExpr *Val;
 } Imm;
 };

The majority of functions within this struct are simply getters and setters for the different
operands stored in the object. For the getters, asserts are added to check that the operand is
of the correct type before returning its value. An example is shown below.

 StringRef getToken() const {
 assert (Kind == Token && "Invalid type access!");
 return StringRef(Tok.Data, Tok.Length);
 }

Generator functions called CreateToken, CreateReg etc. are defined which take the data type
for the operand as well as the start and end locations of the operand (with the exception of
tokens which only take a start location). These functions then create a new object for the
provided operand details, set its contents and then returns it.

The final functions in this structure add operands to a particular instruction. These use the
addOperand function of a MCInst to add the relevant operand. For registers, the getReg() is
simply used. Immediates however use a more complex method where if it is possible to add
the instruction as an immediate it is done so, otherwise it is added as an expression, as
demonstrated below.

 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
 // Add as immediates where possible. Null MCExpr = 0
 if (Expr == 0)
 Inst.addOperand(MCOperand::CreateImm(0));
 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
 else
 Inst.addOperand(MCOperand::CreateExpr(Expr));
 }

7 Copyright © 2012 Embecosm Limited

3.4. Matching and Emitting Instructions
With the OR1KOperand structure defined, the main MatchAndEmitInstruction can be
implemented, calling on the MatchInstructionImpl generated by TableGen to do the hard
work.
When called, MatchInstructionImpl will use a given MCInst to store details on the instruction
if possible, returning an error value. If the instruction was successfully parsed, the value
Match_Success is returned and the instruction can be simply emitted via the provided
MCStreamer.
If however there is a problem parsing the instruction, the return code will be different and set
depending on where the problem occurred. For example Match_MissingFeature is returned if
a required target feature is not enabled and Match_MnemonicFail is returned if the instruction
mnemonic is not recognized.
These return codes can be used to generate a useful error message, though the simplest case
would be just to state than an error occurred and then return. This case is demonstrated below.

bool OR1KAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
 SmallVectorImpl<MCParsedAsmOperand*> &Operands,
 MCStreamer &Out) {
 MCInst Inst;
 SMLoc ErrorLoc;
 unsigned ErrorInfo;

 if (MatchInstructionImpl(Operands, Inst, ErrorInfo)) {
 Out.EmitInstruction(Inst);
 return false;
 }
 else
 return Error(IDLoc, "Error parsing instruction");
}

3.5. Parsing Registers and Immediates
The rest of the functions within archASMParser handle parsing particular operand types.

To parse the name of a register, a ParseRegister function is created. The lexer reading the
file is asked for which type of token the function has been given. A register is an identifier
(i.e. short string, e.g. r0). To firstly filter out incorrect token types, if it is not an identifier, the
function simply returns 0 to indicate that it was unable to parse it.
If the token is an identifier, it is then given to the TableGen generated MatchRegisterName
function. This returns a value corresponding to the register if it is valid, otherwise 0 is returned.
For example if MatchRegisterName is given an instruction mnemonic, which is obviously
incorrect but also an identifier, 0 will be returned, so checking for an error is key.

Note
Register values start with a value of 1, so in the case of an architecture like
OpenRISC 1000 which uses r0, r1, etc. to name registers, r0 will be represented
by 1, r1 by 2, etc.
In addition, this numbering convention is specified by TableGen so it is not
guaranteed that register numbers are the same between different compiled versions
of LLVM.

8 Copyright © 2012 Embecosm Limited

If a match was made, the lexer then consumes the token that was used in the match, preparing
it for the next operand or instruction. Finally an archOperand is created for the register using
the CreateReg function defined above and then returned.

OR1KOperand *OR1KAsmParser::ParseRegister(unsigned &RegNo) {
 SMLoc S = Parser.getTok().getLoc();
 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() -1);

 switch(getLexer().getKind()) {
 default: return 0;
 case AsmToken::Identifier:
 RegNo = MatchRegisterName(getLexer().getTok().getIdentifier());
 if (RegNo == 0)
 return 0;
 getLexer().Lex();
 return OR1KOperand::CreateReg(RegNo, S, E);
 }
 return 0;
}

The same method is applied when parsing immediates. In this case any integer, plus or minus
is accepted as a valid token type for the operand. If the type matches, then a MCParser is used
to calculate the immediate via the ParseExpression function.

If the expression returned is valid it is then evaluated as an absolute value, with an
archOperand being created and returned as before.

3.6. Parsing Operands
The ParseOperand function makes use of the two previously defined functions in order to parse
an operand of which type is originally unknown.

Note
This section describes how this function is used in the OpenRISC 1000
 implementation, specifically for how it handles memory operands. Other
architectures will need to modify this function to match the needs and types of
operands expected to be found in an assembly output.

In the OpenRISC 1000 architecture, there are three types of operand which need parsing by
this method, registers, immediates and memory operands which are of the form imm(reg).

Firstly attempts are made to parse an operand as a register, using the previously defined
ParseRegister function. If this succeeds then the operand is added to the list of operands for
the instruction and the function returns.

If this does not work (the operand is not a register), an attempt is then made to parse the
operand as an immediate. Should the immediate operand successfully be parsed, then it
should be considered as a memory operand first, before placing it into the list of operands.

As the form of a memory operand in OpenRISC 1000 is of the form imm(reg), then the next
token is evaluated to determine if it is a the start of a memory operand. If this type matches
(i.e. it is a left parenthesis, the next token is evaluated as a register. Finally should the last
token be a right parenthesis, then a memory operand has instead been parsed.

Should parsing as a memory operand succeed, the two components are added to the operand
list whereas if the first test failed (the first operand was not an left parenthesis) just the
immediate is added.

9 Copyright © 2012 Embecosm Limited

If however, no valid operand was found (either not a valid type or memory parsing failed after
identifying a left parenthesis), then an error is created and returned instead.

bool OR1KAsmParser::
ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
 OR1KOperand *Op, *Op2 = 0;

 // Attempt to parse token as register
 unsigned RegNo;
 Op = ParseRegister(RegNo);

 // Attempt to parse token as immediate
 if (!Op) {
 Op = ParseImmediate();

 // If next token is left parenthesis, then attempt to parse as memory
 // operand
 if (Op)
 if (getLexer().is(AsmToken::LParen)) {
 getLexer().Lex();
 // Swap tokens around so that they can be parsed
 Op2 = Op;
 Op = ParseRegister(RegNo);

 // Invalid memory operand, fail
 if (!Op || getLexer().isNot(AsmToken::RParen)) {
 Error(Parser.getTok().getLoc(), "unknown operand");
 return true;
 }
 getLexer().Lex();
 }
 }

 // If the token could not be parsed then fail
 if (!Op) {
 Error(Parser.getTok().getLoc(), "unknown operand");
 return true;
 }

 // Push back parsed operand(s) into list of operands
 Operands.push_back(Op);
 if (Op2)
 Operands.push_back(Op2);

 return false;
}

3.7. Parsing Instructions
The final function which needs defining is ParseInstruction, which parses the instruction
mnemonic, followed by all the operands until the end of the statement is reached, called by
MatchInstructionImpl to identify all operands for matching.

10 Copyright © 2012 Embecosm Limited

The instruction mnemonic is parsed by a TableGen generated function, but is first split into
sections separated by the dots in the mnemonic, with each part being added to the instructions
operand list.

For example the mnemonic l.add would become [l, .add], lf.add.s would become
[lf, .add, .s], etc.

Once the mnemonic has been split up and added to the operand list, the ParseOperand function
defined above is repeatedly called to parse the next operand until the end of the statement is
reached (AsmToken::EndOfStatement), with commas being consumed between operands.

bool OR1KAsmParser::
ParseInstruction(StringRef Name, SMLoc NameLoc,
 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
 // First operand is token for instruction
 size_t dotLoc = Name.find('.');
 Operands.push_back(OR1KOperand::CreateToken(Name.substr(0,dotLoc),NameLoc));
 if (dotLoc < Name.size()) {
 size_t dotLoc2 = Name.rfind('.');
 if (dotLoc == dotLoc2)
 Operands.push_back(OR1KOperand::CreateToken(Name.substr(dotLoc),NameLoc));
 else {
 Operands.push_back(OR1KOperand::CreateToken(Name.substr
 (dotLoc, dotLoc2-dotLoc), NameLoc));
 Operands.push_back(OR1KOperand::CreateToken(Name.substr
 (dotLoc2), NameLoc));
 }
 }

 // If there are no more operands, then finish
 if (getLexer().is(AsmToken::EndOfStatement))
 return false;

 // Parse first operand
 if (ParseOperand(Operands))
 return true;

 // Parse until end of statement, consuming commas between operands
 while (getLexer().isNot(AsmToken::EndOfStatement) &&
 getLexer().is(AsmToken::Comma)) {
 // Consume comma token
 getLexer().Lex();

 // Parse next operand
 if(ParseOperand(Operands))
 return true;
 }

 return false;
}

11 Copyright © 2012 Embecosm Limited

3.8. Testing
Note
These tests are not needed to fully test the integrated assembly implementation and
will be superseded by future tests, but are explained here for testing the assembly
parser if implemented separately from the other components.

Tests for assembly parsing should consist of an instance of each instruction in the target's
instruction set, along with the expected output from llvm-mc -show-inst. An example is shown
and explained below.

RUN: llvm-mc -arch=or1k -show-inst %s | FileCheck %s

 l.add r1, r2, r3
CHECK: <MCInst #{{[0-9]+}} ADD
CHECK-NEXT: <MCOperand Reg:2>
CHECK-NEXT: <MCOperand Reg:3>
CHECK-NEXT: <MCOperand Reg:4>>

Each test consists of the instruction, which in this case is an add, followed by a CHECK line for
the mnemonic and for each operand. The first CHECK line searches for the mnemonic, whose
name was set in the TableGen declaration, in this case ADD. It does not matter about the
internal value of this operand, so a search for {{[0-9]+}} matches any value as valid.

Next each operand is tested; CHECK-NEXT ensures that a test only passes if the line immediately
follows the previous check line, i.e. that the operands specified belong with the instruction
mnemonic specified in the previous line. In this case, registers 1, 2 and 3 were specified in the
instruction then tests for register number 2, 3 and 4 are carried out, which are the internal
representation of these registers.

The same is applied for immediate operands, except that the MCOperand type is Imm and it is
expected that the immediate is the same as that in the instruction, not increased by one.

For OpenRISC 1000 , tests for memory operands are carried out by checking for the register
operand first and then the immediate on the line that follows (i.e. the same order that they
were pushed to the operands when defining ParseInstruction).

Tests can be called in the usual way and should all pass if instructions are well defined in
TableGen.

12 Copyright © 2012 Embecosm Limited

Chapter 4. Implementing Instruction Encoding
The next stage in implementing the LLVM assembler is to provide support for encoding
instructions into their native bit patterns.

4.1. Build System
Unlike the assembly parser, no extra library is needed in order to encode instructions, as the
instruction encoder lives in the target's MCTargetDesc directory.

As such, the only changes that need to be made to the build system are those that tell LLVM
which files need to be compiled and generated by TableGen. In this case, the files are the
archMCCodeEmitter C++ source file and the generated archGenCodeEmitter.inc.

4.2. Registration
To register the code emitter, the following code needs adding to the machine code target
description archMCTargetDesc.cpp.

 // Register the MC code emitter
 TargetRegistry::RegisterMCCodeEmitter(ThearchTarget,
 llvm::createarchMCCodeEmitter);

The createarchMCCodeEmitter function is declared in the archMCTargetDesc.h header file
and is defined in archMCCodeEmitter.cpp. This function simply creates and returns a new
archMCCodeEmitter.

4.3. Register Support Function
Before the instruction encoding class can be implemented, it is useful to implement a function
that will convert a register symbol to its register value.

A version of this function is generated by TableGen, though it is dependent on the order that
registers are defined in a register class (assuming the first register defined is encoded as zero,
etc.). Therefore if the register class does not match this (e.g. the class is defined in a different
order for allocation purposes), then a custom function is required.

The register number support function is a simple switch statement which returns the encoding
of a register to be used in an instruction. The default case should be a call to llvm_unreachable
to warn of a problem where the encoding of an invalid register is requested.

The following example demonstrates how the function looks for the OpenRISC 1000
 implementation.

static inline unsigned getOR1KRegisterNumbering(unsigned Reg) {
 switch(Reg) {
 case OR1K::R0 : return 0;
 case OR1K::R1 : return 1;
 ... other cases not shown ...
 case OR1K::R31 : return 31;
 default: llvm_unreachable("Unknown register number!");
 }

13 Copyright © 2012 Embecosm Limited

4.4. Encoding Instructions
Instructions are encoded through an implementation of the MCCodeEmitter class, which
uses information about the target and encodes instructions through the EncodeInstruction
function, streaming encoded bytes through a provided output stream.

Note
Information about this class can be found in LLVM's documentation at llvm.org/
docs/doxygen/html/classllvm_1_1MCCodeEmitter.html

This class requires only the EncodeInstruction function to be defined. However other
functions should also be defined to assist in encoding instructions.

The key function here is getBinaryCodeForInstr, which is generated by TableGen. It takes
a provided instruction and with the instruction encoding information defined with the
instructions to generate the encoded instruction.

 // getBinaryCodeForInstr - TableGen'erated function for getting the
 // binary encoding for an instruction.
 uint64_t getBinaryCodeForInstr(const MCInst &MI) const;

Other functions that are defined in this class (though not necessary), are support functions for
outputting a number of bytes and constants (encoded instruction) with the correct endianness
for the target. Examples of these functions are provided below.

In addition, functions are required to assist in encoding custom operand types, should their
encoding not be known from their TableGen definition.

 // Emit one byte through output stream (from MCBlazeMCCodeEmitter)
 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
 OS << (char)C;
 ++CurByte;
 }

 // Emit a series of bytes (from MCBlazeMCCodeEmitter)
 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
 raw_ostream &OS) const {
 assert(Size <= 8 && "size too big in emit constant");

 for (unsigned i = 0; i != Size; ++i) {
 EmitByte(Val & 255, CurByte, OS);
 Val >>= 8;
 }
 }

The generated getBinaryCodeForInstr function requires one other function to be defined,
getMachineOpValue, which provides the encoding for the default operand types (registers and
immediates) where no relocation is required.

This function first checks the type of operand. If it is a register, then the custom function
for retrieving register numbers defined above is called to get the encoding of this register. If
instead it is an immediate, then it is cast to an unsigned value which is then returned.

http://llvm.org/docs/doxygen/html/classllvm_1_1MCCodeEmitter.html
http://llvm.org/docs/doxygen/html/classllvm_1_1MCCodeEmitter.html

14 Copyright © 2012 Embecosm Limited

Finally, if the operand is an expression (which is the case where relaxation is required), then
information about this relocation is stored in a fixup, with 0 being returned as the encoding
at this point.

unsigned OR1KMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
 SmallVectorImpl<MCFixup> &Fixups) const {
 if (MO.isReg())
 return getOR1KRegisterNumbering(MO.getReg());
 if (MO.isImm())
 return static_cast<unsigned>(MO.getImm());

 // MO must be an expression
 assert(MO.isExpr());

 const MCExpr *Expr = MO.getExpr();
 MCExpr::ExprKind Kind = Expr->getKind();

 if (Kind == MCExpr::Binary) {
 Expr = static_cast<const MCBinaryExpr*>(Expr)->getLHS();
 Kind = Expr->getKind();
 }

 assert (Kind == MCExpr::SymbolRef);

 OR1K::Fixups FixupKind = OR1K::Fixups(0);

 switch(cast<MCSymbolRefExpr>(Expr)->getKind()) {
 default: llvm_unreachable("Unknown fixup kind!");
 break;
 case MCSymbolRefExpr::VK_OR1K_PLT:
 FixupKind = OR1K::fixup_OR1K_PLT26;
 break;
 ... other cases not shown ...
 }

 // Push fixup (all info is contained within)
 Fixups.push_back(MCFixup::Create(0, MO.getExpr(), MCFixupKind(FixupKind)));
 return 0;
}

The main EncodeInstruction function simply takes a provided instruction, passing it to the
TableGen getBinaryCodeForInstr function, returning the encoded version of the instruction,
which is then emitted via the support functions for outputting constants which were defined
above.

Note
In the case of OpenRISC 1000 , all instructions are 32 bits in length, therefore the
same amount of data is outputted in all cases. Where an instruction set has variable
length instructions, then testing the opcode would be required to determine the
length of instruction to emit.

15 Copyright © 2012 Embecosm Limited

void OR1KMCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
 SmallVectorImpl<MCFixup> &Fixups) const {
 // Keep track of the current byte being emitted
 unsigned CurByte = 0;
 // Get instruction encoding and emit it
 ++MCNumEmitted; // Keep track of the number of emitted insns.
 unsigned Value = getBinaryCodeForInstr(MI);
 EmitConstant(Value, 4, CurByte, OS);
}

4.5. Encoding Custom Operands
Depending on the operand types defined in the architecture, custom encoding function may
be required in order to encode these more complex types.
One example of an operand that may require custom encoding is the OpenRISC 1000 memory
operand which combines a register with an immediate offset. This is used for example with
the l.lwz instruction, which loads a word from memory from a location specified by a register
as a pointer plus some immediate offset stored in the instruction.

 l.lhz r1, 4(r2)

If an operand requires custom encoding, then EncoderMethod has to be specified in the operand
TableGen definition, stating which function is used to encode the operand.

def MEMri : Operand<i32> {
 let PrintMethod = "printMemOperand";
 let EncoderMethod = "getMemoryOpValue";
 let MIOperandInfo = (ops GPR, i32imm);
}

Note
It does not matter where in an instruction an operand appears, encoding acts
within the bit field of the size of the operand. The generated getBinaryCodeForInstr
function takes care of mapping operand bits to their corresponding instruction bits.

The following example covers the OpenRISC 1000 memory operand, but the same method can
be applied to any compound operand type.

unsigned OR1KMCCodeEmitter::
getMemoryOpValue(const MCInst &MI, unsigned Op) const {
 unsigned encoding;
 const MCOperand op1 = MI.getOperand(1);
 assert(op1.isReg() && "First operand is not register.");
 encoding = (getOR1KRegisterNumbering(op1.getReg()) << 16);
 MCOperand op2 = MI.getOperand(2);
 assert(op2.isImm() && "Second operand is not immediate.");
 encoding |= (static_cast<short>(op2.getImm()) & 0xffff);
 return encoding;
}

16 Copyright © 2012 Embecosm Limited

To create the encoding for this operand, the individual components (the immediate and the
register) can be obtained in the same way as was done in getMachineOpValue and then be
shifted to the relevant operand bits.

For this example the first operand (a register) is taken and its encoding taken and then shifted
16 bits left. (The OpenRISC 1000 memory operand is a register followed by a 16 bit immediate).
The second operand (the immediate offset) is then encoded and combined with the register
value to give the full encoding of the operand.

Note
The operand locations are hard coded in this example as in the OpenRISC 1000
 implementation, memory operands are always at known locations and no
instruction may have more than one memory operand. In a more generic case, it is
best to use the provided Op value instead of hard coding operand placement.

With the functions defined, instruction encoding should now operate correctly.

4.6. Testing
Tests written for instruction encoding replace any tests written for assembly parsing with those
that check for valid encoding. Assembly parsing is implicitly tested as the correct encoding is
emitted only if the instruction was correctly parsed.

Each instruction in turn should have its instruction manually encoded based on the
instruction set documentation and then tested with llvm-mc and the -show-encoding directive.
An example of a test is shown below.

RUN: llvm-mc -arch=or1k -mattr=mul,div,ror -show-encoding %s | FileCheck %s

 l.add r1, r2, r3
CHECK: # encoding: [0xe0,0x22,0x18,0x00]

The -show-encoding flag will cause llvm-mc to output the encoded version of the provided
instruction, which is in the format shown above. Tests can then be executed in the usual way.

To aid in writing these tests, a python function is specified below that takes an instruction
encoding and prints out the CHECK line for a 32-bit big-endian processor.

def a(asm):
 asm=hex(asm)[2:].zfill(8)
 print '# CHECK: # encoding: [0x'+asm[-8:-6]+',0x'+asm[-6:-4]+',0x'+ \
 asm[-4:-2]+',0x'+asm[-2:]+']'

This function can then be simply used in the same way as this example for the OpenRISC 1000
 l.add instruction when in a big endian mode.

a(0x38<<26|1<<21<2<<16|3<<11)

17 Copyright © 2012 Embecosm Limited

Chapter 5. Implementing Instruction Decoding
Whilst strictly not necessary to assemble code, the ability to disassemble instructions may be
of use, so this is next implemented.

5.1. TableGen Requirements
The instruction decoder uses a decode function built by TableGen in order to match
instructions to their operands. In order for this function to be built correctly, it is important
that only one instruction is mapped to any given bit pattern. If this is not the case then LLVM
will fail to compile.

If two instructions do collide, a message such as the following will appear in the build log,
identifying which instructions conflicted.

Decoding Conflict:
 010001..........................

 JR 010001__________________________
 RET 010001__________________________

Conflicts can be solved by providing context as to when it is suitable to decode instructions
as one type or another. One way of doing this (if suitable) is to disable an instruction for this
stage by either marking it is pseudo (via isPsuedo = 1) or as for use in code generation only
(isCodeGen = 1).

5.2. Build System
As with the assembler parser, the instruction decoder is a sub-library of the main target
library and goes in the Disassembler directory. This library consists of one source file,
archDisassembler.cpp. Files for the build system should be created here in the same way as
was done for the assembly parser.

In addition, the Disassembler directory is added to both the Makefile, CMakeLists.txt and
LLVMBuild.txt for the target library, with has_disassembler = 1 being set in the parents
library definition.

This library makes use of two extra TableGen files' disassembler tables and
enhanced disassembly info. These are in the files archGenDisassemblerTables.inc and
archGenEDInfo.inc respectively. As such these need adding to the Makefile and
CMakeLists.txt as usual.

5.3. Integration
Integration of the disassembler occurs in the same way as the instruction assembler, with
a static createarchDisassembler function being defined, which creates and returns a new
archDisassembler.

static MCDisassembler *createarchDisassembler(const Target &T,
 const MCSubtargetInfo &STI) {
 return new archDisassembler(STI, T.createMCRegInfo(""));
}

18 Copyright © 2012 Embecosm Limited

The LLVMInitializearchDisassembler function is also defined which registers the
disassembler with the rest of the system.

extern "C" void LLVMInitializearchDisassembler() {
 // Register the disassembler
 TargetRegistry::RegisterMCDisassembler(ThearchTarget,
 createarchDisassembler);
}

5.4. Disassembler
The archDisassembler extends the MCDisassembler class and is centered around the
getInstruction function. This function uses a memory region and decodes an instruction
along with its operands, storing this information in a provided MCInst.

Note
Information about the MCDisassembler class can be found in LLVM's documentation
at llvm.org/docs/doxygen/html/classllvm_1_1MCDisassembler.html

A support function can be defined which helps read data from the memory object, formatting
it in a way that the decoder can use. In the case of OpenRISC 1000 , this function reads in 4
bytes (the size of an instruction) and formats it as an unsigned big endian 32-bit word.

Should a processor support both big and small endian instructions or variable length
instructions, this function would instead be configured to read a variable number of bytes or
to create a word which matches the target's endianness.

It should be noted that the function returns Fail if memory could not be read as this is a
required step before disassembly.

static DecodeStatus readInstruction32(const MemoryObject ®ion,
 uint64_t address,
 uint64_t &size,
 uint32_t &insn) {
 uint8_t Bytes[4];

 // We want to read exactly 4 bytes of data.
 if (region.readBytes(address, 4, (uint8_t*)Bytes, NULL) == -1) {
 size = 0;
 return MCDisassembler::Fail;
 }

 // Encoded as big-endian 32-bit word in the stream.
 insn = (Bytes[0] << 24) |
 (Bytes[1] << 16) |
 (Bytes[2] << 8) |
 (Bytes[3] << 0);

 return MCDisassembler::Success;
}

http://llvm.org/docs/doxygen/html/classllvm_1_1MCDisassembler.html

19 Copyright © 2012 Embecosm Limited

The getInstruction should first call the above function to read memory ready for decoding.
Should this function return success, then it is passed to the TableGen generated function
decodearch, InstructionSize which does the decoding.

This will return Success if the instruction was successfully decoded, otherwise it will return
Fail. The Size parameter provided to the function is set to the size of instruction that was
successfully decoded.

In the case of OpenRISC 1000 , only 32-bit instructions are supported, so a valid decode will
always set this value to 4.

5.5. Variable Length Instructions
For targets that support variable length instructions, then there will be multiple decode tables
to parse through and memory may have to be read multiple times before a successful decode
occurs.

One approach to this which is be suitable in most cases is to start with the smallest
instructions, reading the smallest amount of memory possible and then using the appropriate
decode table.

If that fails to match an instruction, then more memory should be read, trying the next smallest
instruction table, repeating until all tables have been tested. If no match has then been made
an error code should be returned.

5.6. Decoding Register Classes
As with encoding register values when building the instruction encoder, when decoding
instructions support for taking an encoded register value and creating an Operand object
which appropriately describes it is required.

The names of these functions are defined by TableGen when building the decoding tables, but
follow the form DecodeRegClassRegisterClass. These functions are given the instruction to
add an operand to, the encoded register value as well as the address in memory where the
instruction can be found at.

In the case of the OpenRISC 1000 architecture, the only register class which can be
in an instruction is the a general register, meaning only one function needs defining,
DecodeGPRRegisterClass. When called, this function checks that the given register number is
within the valid range (0-31). If it is, a new register operand is added to the instruction.

DecodeStatus DecodeGPRRegisterClass(MCInst &Inst,
 unsigned RegNo,
 uint64_t Address,
 const void *Decoder) {

 if (RegNo > 31)
 return MCDisassembler::Fail;

 // The internal representation of the registers counts r0: 1, r1: 2, etc.
 Inst.addOperand(MCOperand::CreateReg(RegNo+1));
 return MCDisassembler::Success;
}

Setting the register value in this case is a case of incrementing the given number by 1 as the
internal representation of registers is r0 is 1, r1 is 2, etc.

20 Copyright © 2012 Embecosm Limited

For targets with a more complex register definition, it is better to use a switch statement similar
to the getOR1KRegisterNumbering function used in the instruction encoder, but checking the
encoding and returning a register object if valid.

5.7. Decoding Custom Operands
For operands that required custom encoding methods in the instruction encoding, similar
functions are also required to decode them.

Firstly in the operand's TableGen definition, the variable DecoderMethod needs to be defined
as the name of the function in the Disassembler class that will handle them.

This function is then defined, taking the bits for each part of the operand, parsing them and
then adding them to the operand in a similar way as was done in the decoding register class
example.

For OpenRISC 1000 , the only operand which requires a custom decoder is the memory
operand, which combines a 5-bit register value with a signed 16-bit offset.

Firstly the bit values of the two operands are obtained from the given operand. These are in
turn converted to MCOperands and added to the instruction.

The register operand is handled in the same way as the register decoder, with the offset being
sign extended to a 32-bit value before the immediate operand type is created.

static DecodeStatus DecodeMemoryValue(MCInst &Inst,
 unsigned Insn,
 uint64_t Address,
 const void *Decoder) {
 unsigned Register = (Insn >> 16) & 0b11111;
 Inst.addOperand(MCOperand::CreateReg(Register+1));
 unsigned Offset = (Insn & 0xffff);
 Inst.addOperand(MCOperand::CreateImm(SignExtend32<16>(Offset)));
 return MCDisassembler::Success;
}

5.8. Testing
Writing tests for the instruction decoder is simple once tests have been written for instruction
encoding. Using llvm-mc -disassemble as the command for the test, tests can be generated
by swapping the input and check lines from the encoding tests around, such that the encoding
is the input and the printed instruction is the output.

For example, using the test from the previous examples.

 l.add r1, r2, r3
CHECK: # encoding: [0x00,0x18,0x22,0xe0]

becomes

 0x00 0x18 0x22 0xe0
CHECK: l.add r1, r2, r3

21 Copyright © 2012 Embecosm Limited

As an aside, both the instruction encoder and decoder can be tested at the same time outside of
the test suite by piping them together, reformatting the output from the encoder before feeding
it to the decoder. The following one-liner will test the encoding for a 32-bit instruction. Should
the encoder and decoder be working, the outputted instruction (minus warnings), should be
the same as the instruction specified at the start of the command.

echo "l.add r1, r20, r31" | llvm-mc -arch=or1k -show-encoding | \
sed 's/.*\(0x[0-9a-f]*\),\(0x[0-9a-f]*\),\(0x[0-9a-f]*\),\(0x[0-9a-f]*\).*'\
'/\1 \2 \3 \4/' | llvm-mc -arch=or1k -disassemble

22 Copyright © 2012 Embecosm Limited

Chapter 6. Implementing ELF Object Writing
Now that individual instructions can be encoded and decoded, the final stage is to enable the
writing of ELF Objects which can then be linked by an external linker such as GNU ld.

This stage involves defining the relocations that are used with the architecture, LLVM fixups
used as well as the algorithms used to manipulate these relocations and fixups.

6.1. Build System
Classes and source files for writing ELF files exist within the target's MCTargetDesc library, so
setting up a new library is not needed. If the file has not been previously created, a AsmBackend
needs adding to the CMakeLists.txt file in this library.

In addition the source file for the ELF object writer needs adding to the same build list. This
file has the name archELFObjectWriter.cpp.

6.2. Defining Fixups and Relocations
Within LLVM, fixups are used to represent information in instructions which is currently
unknown. During instruction encoding, if some information is unknown (such as a memory
location of an external symbol), it is encoded as if the value is equal to 0 and a fixup is emitted
which contains information on how to rewrite the value when information is known.

The assembler goes through a stage of relaxation, applying fixups and modifying instruction
values when they become known to the system. Once complete, any remaining fixups are
converted to relocations and stored in the object file.

ELF Relocation types for a target are defined as an enum in the LLVM support header include/
llvm/Support/ELF.h and are referred to as llvm::ELF::RELOCNAME.

Note
It is vital that these relocations have the same enumerated values as in the linker,
otherwise the linker will not be able to understand and handle the object file
correctly.

An example from the OpenRISC 1000 implementation is given below.

enum {
 R_OR1K_NONE = 0,
 R_OR1K_32 = 1,
...
 R_OR1K_RELATIVE = 21
};

Fixups are defined in lib/Target/arch/MCTargetDesc/ archFixupKinds.h, with (in the general
case) one fixup being created for each relocation type defined above, with the exception of the
no relocation required reloc.

These go into an enum called Fixups. The enum has its first item set to the value
of FirstTargetFixupKind and ends with a marker for LastTargetFixupKind. The total

23 Copyright © 2012 Embecosm Limited

number of fixups is then defined as NumTargetFixupKinds = LastTargetFixupKind -
FirstTargetFixupKind. An example of the fixups used in the OpenRISC 1000 implementation
is shown below.

 enum Fixups {
 // Results in R_OR1K_32
 fixup_OR1K_32 = FirstTargetFixupKind,

 // Results in R_OR1K_16
 fixup_OR1K_16,

 // Results in R_OR1K_8
 fixup_OR1K_8,

 // Results in R_OR1K_LO_16_IN_INSN
 fixup_OR1K_LO16_INSN,
 ...
 // Marker
 LastTargetFixupKind,
 NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
 }

6.3. Assembly Backend
The assembly backend is responsible for manipulating fixup values, replacing them with
values where information is available. The class for this backend inherits from the
MCAsmBackend.

Note
Information about the MCAsmBackend class can be found in LLVM's documentation
at llvm.org/docs/doxygen/html/classllvm_1_1MCAsmBackend.html

The getNumFixupKinds function returns the number of fixups which the backend supports.
This was defined as part of the Fixups enum, so this function simply returns this value.

unsigned getNumFixupKinds() const { return OR1K::NumTargetFixupKinds; }

The applyFixup function takes a fixup and provided data value and applies it to a given
instruction.

To aid in this, a support function adjustFixupValue is created and called which manipulates
the fixup's value before it is applied. This is done for example where a branch instruction does
not store the exact location to branch to but that value without the first two bits. In this case,
the value would be bitshifted by two before being applied.

With the fixup value adjusted appropriately, the instruction it is to be applied to is then
reconstructed as a 64-bit unsigned integer. The fixup value is then shifted and masked into
the correct location in the instruction before being applied. Once done, the now modified
instruction is written back to the original data field.

http://llvm.org/docs/doxygen/html/classllvm_1_1MCAsmBackend.html

24 Copyright © 2012 Embecosm Limited

The following example is from the OpenRISC 1000 implementation, with the data being loaded
and manipulated in a big endian fashion.

void OR1KAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
 unsigned DataSize, uint64_t Value) const {
 MCFixupKind Kind = Fixup.getKind();
 Value = adjustFixupValue((unsigned)Kind, Value);

 if (!Value)
 return; // This value doesn't change the encoding

 // Where in the object and where the number of bytes that need
 // fixing up
 unsigned Offset = Fixup.getOffset();
 unsigned NumBytes = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
 unsigned FullSize;

 switch((unsigned)Kind) {
 default:
 FullSize = 4;
 break;
 }

 // Grab current value, if any, from bits.
 uint64_t CurVal = 0;

 // Load instruction and apply value
 for (unsigned i = 0; i != NumBytes; ++i) {
 unsigned Idx = (FullSize - 1 - i);
 CurVal |= (uint64_t)((uint8_t)Data[Offset + Idx]) << (i*8);
 }

 uint64_t Mask = ((uint64_t)(-1) >>
 (64 - getFixupKindInfo(Kind).TargetSize));
 CurVal |= Value & Mask;

 // Write out the fixed up bytes back to the code/data bits.
 for (unsigned i = 0; i != NumBytes; ++i) {
 unsigned Idx = (FullSize - 1 - i);
 Data[Offset + Idx] = (uint8_t)((CurVal >> (i*8)) & 0xff);
 }
}

Where there are spaces in an instruction stream that need filling with executable instructions,
a series of NOPs should be inserted. This is done via the writeNopData function, which specifies
the size of memory that needs filling. If valid instructions can be placed into the instruction
stream they are then created and emitted via the provided MCObjectWriter.

In the case of the OpenRISC 1000 implementation, the only NOP instruction is 32-bits long.
Therefore if the space to fill is not a multiple of 4 bytes then the function returns false to
indicate that it can't be filled. Otherwise for each set of four bytes, the encoding of a NOP is
emitted via the ObjectWriters Write32 function.

25 Copyright © 2012 Embecosm Limited

bool OR1KAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
 if ((Count % 4) != 0)
 return false;

 for (uint64_t i = 0; i < Count; i += 4)
 OW->Write32(0x15000000);

 return true;
}

Another function which needs implementing is relaxInstruction, which takes an instruction
and relaxes it to a longer instruction with the same effects.

For targets where no instruction ever needs relaxation (e.g. all instructions are the same
size), this function simply returns. Otherwise the longer instruction is created, copying and
formatting operands as appropriate.

Likewise the mayNeedRelaxation function returns true/false depending on if the instruction
may need to be relaxed. In the case of the OpenRISC 1000 , no instruction ever needs relaxing,
therefore the function always returns false.

The fixupNeedsRelaxation returns whether an instruction needs to be relaxed based on the
given fixup. As the case with the previous two functions, if no instruction needs to be relaxed
this function will also always return false.

Finally, the getFixupKindInfo function needs overriding to provide information about target
specific fixups, including their offset, size and flags. This function starts with a table containing
details on each fixup.

If the fixup type provided is not target specific, the overridden function is called to get the
result. Otherwise the entry is looked up in the table specified above and the relevant entry
returned. If no entry exists in either table, then an error is raised.

Note
The entries in this table must be in the same order as specified in
archFixupKinds.h.

26 Copyright © 2012 Embecosm Limited

const MCFixupKindInfo &OR1KAsmBackend::getFixupKindInfo(MCFixupKind Kind) const{
 const static MCFixupKindInfo Infos[OR1K::NumTargetFixupKinds] = {
 // This table *must* be in same the order of fixup_* kinds in
 // OR1KFixupKinds.h.
 //
 // name offset bits flags
 { "fixup_OR1K_32", 0, 32, 0 },
 { "fixup_OR1K_16", 0, 16, 0 },
 ... other fixups not shown ...
 };

 if (Kind < FirstTargetFixupKind)
 return MCAsmBackend::getFixupKindInfo(Kind);

 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
 "Invalid kind!");
 return Infos[Kind - FirstTargetFixupKind];
}

To enable and create the assembly backend, createarchAsmBackend is defined and returns a
new archAsmBackend object, based on a given target and triple.

MCAsmBackend *llvm::createarchAsmBackend(const Target &T, StringRef TT) {
 Triple TheTriple(TT);
 return new archAsmBackend(T, Triple(TT).getOS());
}

Finally this function is set up with the MC target registry, associating the assembly backend
with the target.

In archMCTargetDesc.cpp, the assembly backend is added in the same way as other
components.

 // Register the ASM Backend
 TargetRegistry::RegisterMCAsmBackend(ThearchTarget,
 createarchAsmBackend);

6.4. ELF Object Writer
The ELF Object Writer class is based on the class MCELFObjectTargetWriter and handles the
manipulations of fixups and conversion of fixups to relocs.

Note
Information about the MCELFObjectTargetWriter class can be
found in LLVM's documentation at llvm.org/docs/doxygen/html/
classllvm_1_1MCELFObjectTargetWriter.html

The constructor for this class simply sets up the parent class, passing it the OS ABI version
and the value used to identify the ELF file as belonging to that architecture.

http://llvm.org/docs/doxygen/html/classllvm_1_1MCELFObjectTargetWriterhtml
http://llvm.org/docs/doxygen/html/classllvm_1_1MCELFObjectTargetWriterhtml

27 Copyright © 2012 Embecosm Limited

Known machines can be found in an enum in include/llvm/Support/ELF.h. Should the
machine architecture not be known, a new value should be used that does not conflict with
any other architecture.

For the OpenRISC 1000 architecture, this value is ELF::EM_OPENRISC and has the value 92.
The constructor is therefore as follows.

OR1KELFObjectWriter::OR1KELFObjectWriter(uint8_t OSABI)
 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_OPENRISC,
 /*HasRelocationAddend*/ true) {}

The GetRelocType function takes a fixup type, mapping it to a relocation type. As in many
cases each fixup represents a single representation, the basic structure of this function is a
switch statement and setting a variable (Type) to the relocation for the given fixup.

In addition to the custom fixups, there are also some built-in fixups (for 32bit absolute
relocation etc.) that also need mapping (these are called FK_Data_4, etc. and can be found in
include/llvm/MC/MCFixup.h.

unsigned OR1KELFObjectWriter::GetRelocType(const MCValue &Target,
 const MCFixup &Fixup,
 bool IsPCRel,
 bool IsRelocWithSymbol,
 int64_t Addend) const {
 unsigned Type;
 unsigned Kind = (unsigned)Fixup.getKind();
 switch (Kind) {
 default: llvm_unreachable("Invalid fixup kind!");
 case OR1K::fixup_OR1K_PCREL32:
 case FK_PCRel_4:
 Type = ELF::R_OR1K_32_PCREL;
 break;
 ... other fixups note shown ..
 return Type;
}

The object writer is enabled in a similar fashion to the other MC components, a function
createarchELFObjectWriter is used to create and return a new object writer. This function
can be modified for example to provide support for different object writers depending on word
size and endianness. A simple example from OpenRISC 1000 is shown below.

MCObjectWriter *llvm::createOR1KELFObjectWriter(raw_ostream &OS,
 uint8_t OSABI) {
 MCELFObjectTargetWriter *MOTW = new OR1KELFObjectWriter(OSABI);
 return createELFObjectWriter(MOTW, OS, /*IsLittleEndian=*/ false);
}

This function is then used in the previously defined Assembly Backend to set up the object
writer when the backend needs it.

28 Copyright © 2012 Embecosm Limited

MCObjectWriter *OR1KAsmBackend::createObjectWriter(raw_ostream &OS) const {
 return createOR1KELFObjectWriter(OS,
 MCELFObjectTargetWriter::getOSABI(OSType));
}

Should the architecture require support for multiple object file types, then the function would
be modified so that a different object writer is created depending on the OS requested.

Finally support for streaming out object files is added in the archMCTargetDesc.cpp file, by
registering a createarchMCStreamer function with the target registry.

In the below example from OpenRISC 1000 , this function checks for if the requested target
format is MACH-O or COFF. Neither of these are supported by this implementation, so an
error is raised if this is requested.

static MCStreamer *createOR1KMCStreamer(const Target &T, StringRef TT,
 MCContext &Ctx, MCAsmBackend &MAB,
 raw_ostream &_OS,
 MCCodeEmitter *_Emitter,
 bool RelaxAll,
 bool NoExecStack) {
 Triple TheTriple(TT);
 if (TheTriple.isOSDarwin()) {
 llvm_unreachable("OR1K does not support Darwin MACH-O format");
 }
 if (TheTriple.isOSWindows()) {
 llvm_unreachable("OR1K does not support Windows COFF format");
 }
 return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
}

 // Register the object streamer
 TargetRegistry::RegisterMCObjectStreamer(TheOR1KTarget,
 createOR1KMCStreamer);

6.5. Testing
Tests for object writing can be written in one of two forms. The first consists of using llvm
assembly files which are then compiled with llc and the file examined by elf-dump or native
instructions are interpreted by llvm-mc and again examined by elf-dump.

elf-dump is a command that is part of the LLVM test infrastructure and outputs the
instructions and relocations in an object file for the purposes of testing that instruction
encoding, sections, relocations and other ELF-based functionality work correctly.

To provide a simple demonstration of the tests that can be written, the following has been
taken from the tests for the x86_64 Linux target. The test consists of two instructions which
when encoded should have relocations associated with them.

The CHECK lines of the test look for the section where the encoded instructions will appear and
then check that the section's location, flags, etc. are correct. Finally it checks the relocations
on the two instructions and ensures that their types, values and addends are correct.

29 Copyright © 2012 Embecosm Limited

If needed, only the relocation sections can be checked. This is useful where section address
may not be known but the relocation symbol identifiers and types are still known.

// RUN: llvm-mc -filetype=obj -triple x86_64-pc-linux-gnu %s -o - | \
// RUN: elf-dump --dump-section-data | FileCheck %s

// Test that we produce the correct relocation.

 loope 0 # R_X86_64_PC8
 jmp -256 # R_X86_64_PC32

// CHECK: # Section 2
// CHECK-NEXT: (('sh_name', 0x00000001) # '.rela.text'
// CHECK-NEXT: ('sh_type', 0x00000004)
// CHECK-NEXT: ('sh_flags', 0x0000000000000000)
// CHECK-NEXT: ('sh_addr', 0x0000000000000000)
// CHECK-NEXT: ('sh_offset', 0x00000000000002e8)
// CHECK-NEXT: ('sh_size', 0x0000000000000030)
// CHECK-NEXT: ('sh_link', 0x00000006)
// CHECK-NEXT: ('sh_info', 0x00000001)
// CHECK-NEXT: ('sh_addralign', 0x0000000000000008)
// CHECK-NEXT: ('sh_entsize', 0x0000000000000018)
// CHECK-NEXT: ('_relocations', [
// CHECK-NEXT: # Relocation 0
// CHECK-NEXT: (('r_offset', 0x0000000000000001)
// CHECK-NEXT: ('r_sym', 0x00000000)
// CHECK-NEXT: ('r_type', 0x0000000f)
// CHECK-NEXT: ('r_addend', 0x0000000000000000)
// CHECK-NEXT:),
// CHECK-NEXT: # Relocation 1
// CHECK-NEXT: (('r_offset', 0x0000000000000003)
// CHECK-NEXT: ('r_sym', 0x00000000)
// CHECK-NEXT: ('r_type', 0x00000002)
// CHECK-NEXT: ('r_addend', 0x0000000000000000)
// CHECK-NEXT:),
// CHECK-NEXT:])
// CHECK-NEXT:),

30 Copyright © 2012 Embecosm Limited

Glossary

Application Binary Interface (ABI)
The definition of how registers are used during function call and return for a particular
architecture.

big endian
A multi-byte number representation, in which the most significant byte is placed first (i.e.
at the lowest address) in memory.
See also: little endian

little endian
A multi-byte number representation, in which the least significant byte is placed first (i.e.
at the lowest address) in memory.
See also: big endian

Machine Code (MC)
LLVM Library designed for handling low level target-specific instruction constructs for
creating assemblers, disassemblers, etc.

TableGen
LLVM language and tool for generating classes to aid in instruction assembly, printing,
etc. while keeping the need to define the instruction architecture only once.

31 Copyright © 2012 Embecosm Limited

References
[1] LLVM Doxygen Documentation LLVM API documentation, available at http://llvm.org/

doxygen.

[2] OpenRISC 1000 Architecture Manual Available from the OpenCores SVN repository at
http://opencores.org/svnget,or1k?file=/trunk/docs/openrisc_arch.pdf

[3] OpenRISC 1000 Relocation Information Available in source code form at https://
github.com/skristiansson/or1k-src/blob/or1k/include/elf/or1k.h.

http://llvm.org/doxygen
http://llvm.org/doxygen
http://opencores.org/svnget,or1k?file=/trunk/docs/openrisc_arch.pdf
https://github.com/skristiansson/or1k-src/blob/or1k/include/elf/or1k.h
https://github.com/skristiansson/or1k-src/blob/or1k/include/elf/or1k.h

	Howto: Implementing LLVM Integrated Assembler
	Table of Contents
	Chapter 1. Introduction
	1.1. Target Audience
	1.2. Examples
	1.3. Further Information
	1.4. About Embecosm Application Notes

	Chapter 2. Integrated Assembler within LLVM
	2.1. llvm-mc

	Chapter 3. Implementing Assembly Parser Support
	3.1. LLVM Build System
	3.2. archASMParser Class
	3.3. archOperand Structure
	3.4. Matching and Emitting Instructions
	3.5. Parsing Registers and Immediates
	3.6. Parsing Operands
	3.7. Parsing Instructions
	3.8. Testing

	Chapter 4. Implementing Instruction Encoding
	4.1. Build System
	4.2. Registration
	4.3. Register Support Function
	4.4. Encoding Instructions
	4.5. Encoding Custom Operands
	4.6. Testing

	Chapter 5. Implementing Instruction Decoding
	5.1. TableGen Requirements
	5.2. Build System
	5.3. Integration
	5.4. Disassembler
	5.5. Variable Length Instructions
	5.6. Decoding Register Classes
	5.7. Decoding Custom Operands
	5.8. Testing

	Chapter 6. Implementing ELF Object Writing
	6.1. Build System
	6.2. Defining Fixups and Relocations
	6.3. Assembly Backend
	6.4. ELF Object Writer
	6.5. Testing

	Glossary
	References

