
Howto: CVS to Git
Efficient Multi-Module CVS Migration

Simon Cook
Embecosm

Application Note 11. Issue 1
Publication date February 2013

http://www.embecosm.com

ii Copyright © 2012 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Embecosm (www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com

iii Copyright © 2012 Embecosm Limited

Table of Contents
1. Introduction ... 1

1.1. Target Audience ... 1
1.2. Example ... 1
1.3. Further information ... 1
1.4. About Embecosm Application Notes ... 2

2. Mirroring a CVS repository ... 3
3. Splitting up the Repository ... 4
4. Conversion to Git ... 6
5. Building a Script .. 8
6. Summary .. 15
Glossary .. 16
References .. 17

iv Copyright © 2012 Embecosm Limited

List of Figures
3.1. synccvs shell function ... 5
5.1. Complete CVS to Git conversion script ... 10

1 Copyright © 2012 Embecosm Limited

Chapter 1. Introduction
For many years, CVS has been the primary tool used by teams of developers on large software
code bases, allowing each developer to work on a single master version of the software. This
tool is in continued use today, despite the introduction of alternatives which do not suffer
from many of the disadvantages found in CVS. One such popular example is Git, a distributed
versioning tool created and popularized by Linus Torvalds.

Tools exist for migrating repositories from CVS to Git, but these can suffer from issues such as
being buggy and slow when used with remote repositories, issues with repeating path names
and non-maintainability (once a repository has been converted, it cannot be fast-forwarded
to the latest version). The issue of multiple modules becomes more complex when there are
modules whose name is also a top-level directory in the source tree, but where the module
does not consist of just that directory; some tools check out just the directory and others the
module.

This application note covers the process of migrating multiple CVS modules from a remote
repository to separate Git repositories with these tools in a reliable way, whilst minimizing
network traffic to remote CVS servers when extracting and converting multiple modules (i.e.
each file is only checked out once using this process once regardless of the number of
modules that will be converted). It also solves the module-directory issue by stripping down
the repository to just the required files and then cloning the new repository in its entirety.

1.1. Target Audience
This Application Note is aimed primarily at Git users who wish to import CVS repositories
into their existing work flows and for developers/administrators who wish to do a permanent
or continuous one-way migration from CVS to Git. This note assumes basic familiarity with
Git (i.e. the concept of a remote and a repository) but does not assume familiarity with CVS.
This script also assumes understanding of a user's preferred shell; commands written are
compatible with the bash shell but should easily be convertible to another shell.

1.2. Example
An example of this system is Embecosm's mirror of the sourceware CVS repository, mirroring
the CGEN module as a Git repository. This can be found at http://github.com/embecosm/
cgen and is actively maintained via the same process described here. This mirror is used as
an example throughout this application note.

For the code examples used in this application note, the following shell variables should be
set as follows.

${DESTDIR} : destination directory for module specific CVS repo
${GITDIR} : destination directory for module specific Git repo
${REPOURL} : URL to push the module specific Git repository to
${SRCDIR} : source directory for storing initial local copy of CVS repo

1.3. Further information
The main source of information regarding the use of Git is the Git documentation [1]. This
documentation can either be browsed on the Git website or is installed as man pages with
the main Git distribution.

http://www.github.com/embecosm/cgen
http://www.github.com/embecosm/cgen

2 Copyright © 2012 Embecosm Limited

Similarly, documentation for CVS [2], is also included with its distribution.

1.4. About Embecosm Application Notes
Embecosm publishes a series of free and open source application notes, designed to help
working engineers with practical problems.

Feedback is always welcome, which should be sent to <info@embecosm.com>.

3 Copyright © 2012 Embecosm Limited

Chapter 2. Mirroring a CVS repository
Note
This stage is only needed for remote repositories. When using local repositories,
the local source should instead be used for further steps.

The first step in converting to Git is to replicate the CVS repository so there a local copy is
available. This is done so that when splitting up the repository into those for each module,
files and directories that are common to multiple repositories are only downloaded once. In
addition, any directory naming issues that arise can simply be solved by renaming the local
directory. Once complete, this can be split up to create new CVS and Git repositories as
required.

There are two ways in which this can be done. The first method uses rsync (or other similar
tool) to clone the repository, if such access to the bare repository available. Using rsync for this
task has the benefit that it minimizes network traffic when updating this copy in the future
and additionally allows directories to be omitted as required, for example those that will not
feature in any converted repository.

For this purpose, the CVSROOT directory can be omitted. In the authors experience, the directory
is approximately half the size of the entire repository and is not used in any other conversion
step, so not downloading this directory dramatically reduces the time and resources needed
to complete the conversion.

rsync -az -v --delete --delete-excluded --exclude CVSROOT/** \
 sourceware.org::src-cvs/ ${SRCDIR}

The second method, which can be used if bare repository access is not possible is to use a
tool like cvsclone to duplicate the entire repository (using the module name "." or the name
of the repositories top level directory).

Note
cvsclone is not always found in an operating system's software repository. For this
guide, the author obtained a working copy of cvsclone from https://github.com/
akavel/cvsclone.

For example, to clone the sourceware repository, the following command would be used. The
tool accepts two parameters, the first being the location of the CVS repository to clone (after
the -d argument) and the second being the module/directory to be cloned.

cvsclone -d :pserver:anoncvs@sourceware.org:/cvs/src src

The -d parameter specifies the CVS server to connect to, with src being the module to clone.

Note
cvsclone takes a lot of time to complete creating a new clone. This is due to it
checking out each version of a file sequentially. For large repositories it could take
several days for the initial clone operation to complete.

https://github.com/akavel/cvsclone
https://github.com/akavel/cvsclone

4 Copyright © 2012 Embecosm Limited

Chapter 3. Splitting up the Repository
CVS repositories have a concept of modules, which are different views into a single repository.
As an example repository, module a could contain files foo and bar whilst module b contains
bar and baz. When a change to bar is made from the perspective of either module, the same
change appears in the other as they are in the same repository and share the same bar.

Since Git has no equivalent concept, we will create a separate Git repository for each CVS
module. The first step in this is to split the local CVS repository into multiple repositories, one
for each module. These will contain just the directories and files which make up each module.
rsync is again used to copy these files from the master CVS repository to where the modules
repository is stored.

Note
This will result in duplication of files that are common to multiple modules. Using
the example above, bar will be copied to the repository for both the a and b modules.

Note
Although this section specifically refers to cloning individual CVS modules, it is
not limited to this. Any arbitrary selection of files will work in the same way and
achieve the same result.

To aid in this, a shell function synccvs has been created which copies files out of the correct
locations so that the complete repository history is preserved.

In CVS, tracked files are stored in ,v files, which contains each file's state across all branches
and tags, including their commit metadata. If the file is later deleted, it is moved to a directory
called Attic. synccvs checks this location in addition to the HEAD repository directory to ensure
history is preserved wherever it is stored.

The synccvs shell function is listed in Figure 3.1. It accepts one argument, the name of the file
or directory to be stored. It then copies the correct files from the master repository (defined as
${SRCDIR}) to the module specific directory (${DESTDIR}).

5 Copyright © 2012 Embecosm Limited

Function for syncing file out of repository
synccvs() {
 # Make sure parent directory works, otherwise rsync fails
 mkdir -p `dirname ${DESTDIR}/${1}`
 # Firstly if directory, rsync dir
 if test -d ${SRCDIR}/${1}; then
 rsync -avz ${SRCDIR}/${1}/ ${DESTDIR}/${1}
 return
 fi
 # Next, if file not in attic, rsync that
 if test -e ${SRCDIR}/${1},v; then
 rsync -avz ${SRCDIR}/${1},v ${DESTDIR}/${1},v
 return
 fi
 # Finally, check if file in attic, then rsync that
 if test -e `dirname ${SRCDIR}/${1}`/Attic/`basename ${SRCDIR}/${1}`,v; then
 mkdir -p `dirname ${DESTDIR}/${1}`/Attic
 rsync -avz `dirname ${SRCDIR}/${1}`/Attic/`basename ${SRCDIR}/${1}`,v \
 `dirname ${DESTDIR}/${1}`/Attic/`basename ${DESTDIR}/${1}`,v
 return
 fi
 echo "Path doesn't exist! ${1}"
 exit 1
}

Figure 3.1. synccvs shell function

In the following example, this function is used to copy a project's change log (stored in a file
called ChangeLog) to the new repository. In the case of the sourceware repository, this would
be done via the following command.

synccvs src/ChangeLog

Finally, once synccvs has been called for all files/folders to be included, the CVS repository
can be reinitialized, creating a CVSROOT directory for the new repository.

cvs -d ${DESTDIR} init

6 Copyright © 2012 Embecosm Limited

Chapter 4. Conversion to Git
With separate CVS repositories created for each module for conversion, the final stage is to
convert these to Git using the git cvsimport command, adding remote destinations for each
repository and finally pushing these to their remotes.

git cvsimport uses a tool called cvsps to create patch sets which are then imported into the
Git repository. cvsps keeps a cache of what has previously been imported into the repository.
There is a risk of this cache causing the repository to update incorrectly during successive
updates to the Git repository due to the CVS reinitialization. This cache should therefore be
removed in order to ensure the repository is correctly maintained.

The following two line script uses the location of the CVS repository and deletes its
corresponding cvsps cache file.

CVSPSFILE=`echo ${DESTDIR} | sed 's/\//\#/g'`
rm -Rf ~/.cvsps/${CVSPSFILE}*

Note
There are many different versions of cvsps, each of which have different issues
importing different repositories. The author has had the best experience with the
following version:

https://github.com/Alexpux/cvsps

The Git repository is then created using git cvsimport, with the source and destination
directories set as required. For the entire repository to be imported as-is, . can again be used
as the module name. Alternatively the name of a subdirectory can be used, as in the example
below. With keeping with the standard Git naming conventions, the HEAD branch has been
named master. The parameters specified when using this program are specified below.

Note
If the CVS repository already has a branch named master, the name of the HEAD
branch should be set to something other than master in the following command,
otherwise the import will not occur correctly.

git cvsimport -d ${DESTDIR} -C ${GITDIR} -p -z,120 -o master -k src

-d specifies the CVS repository, which in this case is the one previously created when splitting
up the main repository.

-C does the same for the respective Git repository.

-p -z,120 specifies the amount of time in seconds that two file commits can differ in CVS and
still be classed as the same commit under Git. The default if this option is omitted is 300
seconds (5 minutes). A value of 2 minutes is used here for demonstration purposes.

-o specifies the name to set the MAIN branch to have in Git (usually master).

-k sets the directory to treat as the root of the repository. Usually this will be . but in this
example, due to the structure of the particular CVS repository (all source code is stored in a
directory called src), this is used instead.

https://github.com/Alexpux/cvsps

7 Copyright © 2012 Embecosm Limited

Once complete, a remote can be added to the repository and it can be pushed with the --mirror
option set, forcing all branches and tags to be in sync with the original CVS repository.

git remote add origin ${REPOURL}
git push origin --mirror

8 Copyright © 2012 Embecosm Limited

Chapter 5. Building a Script
With the steps in the previous chapters completed, a clone of the CVS repository has been
made and a Git repository made of a module. It may however be desired to do this for many
modules and to periodically update these repositories (if for example work is still carried out
in CVS). As such, creating a script to extend and automate this process is desirable.

This script should consist of a step to clone the repository (if needed), followed by sections to
handle each module to be converted. The script in Section 5.1 is used to maintain Embecosm's
CGEN repository and demonstrates the form such a script could take. It is also available
under a GPL v3 license and forms Embecosm Software Package 8 (ESP 8), available at http://
www.embecosm.com/resources/software.

Note
For clarity, the script has had its synccvs function collapsed, but is identical to
the one used above.

In this example, each module is enabled and disabled in the top configuration section and has
its destination set, followed by the initial CVS cloning operation.

CGEN
CGEN=1
CGENREPO="git@github.com:embecosm/cgen.git"
Get sources (we don't check out CVSROOT because we don't use it)
export SRCDIR=${BASEDIR}/sourceware
rsync -az -v --delete --delete-excluded --exclude CVSROOT/** \
 sourceware.org::src-cvs/ ${SRCDIR}

Next, each module in turn has its directories set and relevant files are copied via synccvs.

For ease of maintenance, where the same multiple files or directories need importing into a
number of repositories, the task of copying these should be placed into a separate function and
that called instead. The following example is taken from converting the sourceware repository
of GNU tool chain components. This repository contains modules for various tools (binutils,
GDB, CGEN, etc.) syncsrcsupport copies the support files (e.g. configure) that are common to
all compilable modules within the sourceware tree. (These files are contained within the src-
support module in the base CVS repository.)

Note
The list of CVS modules along with the directories and files contained within each
module can be found in the CVSROOT/modules file in the remote repository. This
is not the same as the regenerated CVSROOT/modules files found in each modules
repository. This file can either be downloaded separately via rsync, cvs or though
a cvsweb interface if one is available.

http://www.embecosm.com/resources/software
http://www.embecosm.com/resources/software

9 Copyright © 2012 Embecosm Limited

This function acts as an alias for synccvsing the src-support module found in
CVSROOT/modules on sourceware
syncsrcsupport() {
 synccvs src/.cvsignore
 synccvs src/COPYING
 synccvs src/COPYING3
 synccvs src/COPYING.LIB
 synccvs src/COPYING3.LIB
 synccvs src/COPYING.NEWLIB
 synccvs src/COPYING.LIBGLOSS
 synccvs src/ChangeLog
 synccvs src/MAINTAINERS
 synccvs src/Makefile.def
 ... other files not listed ...
}

Once all files have been synchronized, the Git repository is then created and uploaded as
previously described.

 # Reinitialize cvs for our new repo and then convert (using src as module)
 cvs -d ${DESTDIR} init
 git cvsimport -v -d ${DESTDIR} -C ${GITDIR} -p -z,120 -o master -k src
 # Push to GitHub
 cd ${GITDIR}
 git remote rm github || true
 git remote add github ${CGENREPO}
 git push github --mirror

Note
It is worth nothing in this example that the original Git remote github is first
removed before being set. This enables the destination to be changed via the
configuration. This command is also combined with true to calculate its return
value. This is because the script is set to quit on the first error and attempting to
remove a non-existent remote would cause an error.

If the remote does not exist (or it cannot be written to) then an error is caught
during the git push command and the script exits as intended.

Adding other modules to the script is done by duplicating the section for that module, setting
the files to be imported and making the appropriate changes to the configuration.

Finally, this script can be added to a crontab to allow the repositories to be automatically
updated periodically. Alternatively, this script could be added as part of the post commit filters
(set by changing the CVSROOT/loginfo file), enabling the Git repository to be updated as soon
as a new CVS commit is made. Examples of both of these are shown below.

Update CVS mirrors
0 * * * * /path/to/mirror/script/mirrorscript

* /path/to/mirror/script/mirrorscript %s

10 Copyright © 2012 Embecosm Limited

#!/bin/bash -e
A script to convert sourceware's CVS repo to a set of Git repos
Written by Simon Cook <simon.cook@embecosm.com>

Copyright (c) 2013 Embecosm Limited

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

#######################################
Configuration
#######################################

1. Location to store working directory (script will only work in there, except
for removing CVSPS working files on each iteration)
BASEDIR='/opt/sourcewaretree'
2. Configuration for which repositories to upload
To enable sync and upload, set the enable variable to 1 and destination
(I have only included a selection here, but really can do all if we want)
CGEN
CGEN=1
CGENREPO="git@github.com:embecosm/cgen.git"
binutils
BINUTILS=0
BINURILSREPO="git@github.com:embecosm/binutils.git"
src - the entire tree
ALLSRC=0
ALLSRCREPO="git@github.com:embecosm/sourceware.git"

We need a custom function to merge in changes from the different
locations that changes may be found in.
synccvs() {
 # Make sure parent directory works, otherwise sync fails
 mkdir -p `dirname ${DESTDIR}/${1}`
 # Firstly if directory, sync dir
 if test -d ${SRCDIR}/${1}; then
 rsync -az ${SRCDIR}/${1}/ ${DESTDIR}/${1}
 return
 fi

Figure 5.1. Complete CVS to Git conversion script

11 Copyright © 2012 Embecosm Limited

 # Next, if file not in attic, sync that
 if test -e ${SRCDIR}/${1},v; then
 rsync -az ${SRCDIR}/${1},v ${DESTDIR}/${1},v
 return
 fi
 # Finally, check if file in attic, then sync that
 if test -e `dirname ${SRCDIR}/${1}`/Attic/`basename ${SRCDIR}/${1}`,v; then
 mkdir -p `dirname ${DESTDIR}/${1}`/Attic
 rsync -az `dirname ${SRCDIR}/${1}`/Attic/`basename ${SRCDIR}/${1}`,v \
 `dirname ${DESTDIR}/${1}`/Attic/`basename ${DESTDIR}/${1}`,v
 return
 fi
 echo "Path doesnt exist! ${1}"
 exit 1
}

This function acts as an alias for synccvsing the src-support module found in
CVSROOT/modules on sourceware
syncsrcsupport() {
 synccvs src/.cvsignore
 synccvs src/COPYING
 synccvs src/COPYING3
 synccvs src/COPYING.LIB
 synccvs src/COPYING3.LIB
 synccvs src/COPYING.NEWLIB
 synccvs src/COPYING.LIBGLOSS
 synccvs src/ChangeLog
 synccvs src/MAINTAINERS
 synccvs src/Makefile.def
 synccvs src/Makefile.in
 synccvs src/Makefile.tpl
 synccvs src/README
 synccvs src/README-maintainer-mode
 synccvs src/compile
 synccvs src/config
 synccvs src/config-ml.in
 synccvs src/config.guess
 synccvs src/config.if
 synccvs src/config.rpath
 synccvs src/config.sub
 synccvs src/configure
 synccvs src/configure.ac
 synccvs src/configure.in
 synccvs src/contrib
 synccvs src/depcomp
 synccvs src/etc
 synccvs src/gettext.m4
 synccvs src/install-sh
 synccvs src/lt~obsolete.m4

12 Copyright © 2012 Embecosm Limited

 synccvs src/ltgcc.m4
 synccvs src/ltsugar.m4
 synccvs src/ltversion.m4
 synccvs src/ltoptions.m4
 synccvs src/libtool.m4
 synccvs src/ltcf-c.sh
 synccvs src/ltcf-cxx.sh
 synccvs src/ltcf-gcj.sh
 synccvs src/ltconfig
 synccvs src/ltmain.sh
 synccvs src/makefile.vms
 synccvs src/missing
 synccvs src/mkdep
 synccvs src/mkinstalldirs
 synccvs src/move-if-change
 synccvs src/setup.com
 synccvs src/src-release
 synccvs src/symlink-tree
 synccvs src/ylwrap
}

Get sources (we don't check out CVSROOT because we don't use it)
export SRCDIR=${BASEDIR}/sourceware
rsync -az -v --delete --delete-excluded --exclude CVSROOT/** \
 sourceware.org::src-cvs/ ${SRCDIR}

#######################################
cgen Module
#######################################
if test ${CGEN} == 1; then
 export DESTDIR=${BASEDIR}/cgen
 export GITDIR=${BASEDIR}/cgen.git
 # Sync CVS Tree
 rm -Rf ${DESTDIR}
 mkdir -p ${DESTDIR}
 syncsrcsupport
 synccvs src/CVS
 synccvs src/cgen
 synccvs src/cpu
 # Remove cvsps temporary files
 CVSPSFILE=`echo ${DESTDIR} | sed 's/\//\#/g'`
 rm -Rf ~/.cvsps/${CVSPSFILE}*
 # Reinitialize cvs for our new repo and then convert (using src as module)
 cvs -d ${DESTDIR} init
 git cvsimport -v -d ${DESTDIR} -C ${GITDIR} -p -z,120 -o master -k src
 # Push to GitHub
 cd ${GITDIR}
 git remote rm github || true
 git remote add github ${CGENREPO}

13 Copyright © 2012 Embecosm Limited

 git push github --mirror
fi

#######################################
binutils Module
#######################################
if test ${BINUTILS} == 1; then
 export DESTDIR=${BASEDIR}/binutils
 export GITDIR=${BASEDIR}/binutils.git
 # Sync CVS Tree
 rm -Rf ${DESTDIR}
 mkdir -p ${DESTDIR}
 syncsrcsupport
 synccvs src/CVS
 synccvs src/binutils
 synccvs src/opcodes
 synccvs src/bfd
 synccvs src/libiberty
 synccvs src/include
 synccvs src/gas
 synccvs src/gprof
 synccvs src/ld
 synccvs src/gold
 synccvs src/elfcpp
 synccvs src/intl
 synccvs src/texinfo
 synccvs src/cpu
 # Remove cvsps temporary files
 CVSPSFILE=`echo ${DESTDIR} | sed 's/\//\#/g'`
 rm -Rf ~/.cvsps/${CVSPSFILE}*
 # Reinitialize cvs for our new repo and then convert (using src as module)
 cvs -d ${DESTDIR} init
 git cvsimport -v -d ${DESTDIR} -C ${GITDIR} -p -z,120 -o master -k src
 # Push to GitHub
 cd ${GITDIR}
 git remote rm github || true
 git remote add github ${BINUTILSREPO}
 git push github --mirror
fi

#######################################
src Module (everything)
#######################################
if test ${ALLSRC} == 1; then
 export DESTDIR=${BASEDIR}/allsrc
 export GITDIR=${BASEDIR}/allsrc.git
 # Sync CVS Tree
 rm -Rf ${DESTDIR}
 mkdir -p ${DESTDIR}

14 Copyright © 2012 Embecosm Limited

 synccvs src
 # Remove cvsps temporary files
 CVSPSFILE=`echo ${DESTDIR} | sed 's/\//\#/g'`
 rm -Rf ~/.cvsps/${CVSPSFILE}*
 # Reinitialize cvs for our new repo and then convert (using src as module)
 cvs -d ${DESTDIR} init
 git cvsimport -v -d ${DESTDIR} -C ${GITDIR} -p -z,120 -o master -k src
 # Push to GitHub
 cd ${GITDIR}
 git remote rm github || true
 git remote add github ${ALLSRCREPO}
 git push github --mirror
fi

15 Copyright © 2012 Embecosm Limited

Chapter 6. Summary
The following list can be used as a summary for porting a CVS repository to a set of Git
repositories. It serves as a list of functionality that any updating script should have.

1. Clone the repository (if needed) so that there is a local copy of the CVS repository to
work from (Chapter 2).

2. Split up the repository copy into separate repositories for each module, each of which
will become Git repositories, utilising the synccvs function as required (Chapter 3).

3. Convert each component to a Git repository using cvsps and git cvs-import and push
these repositories to their respective remotes (Chapter 4).

4. (Optional) Set up a cron job or CVS post commit filter to automatically incorporate
changes (Chapter 5).

16 Copyright © 2012 Embecosm Limited

Glossary

CVS
(Concurrent Versions System), open source client-server revision control/source code
management system.

Git
Open source distributed revision control/source code management system originally
developed by Linus Torvalds for the Linux kernel.

Repository
A store for source code (and other files) which maintains records of which files were
modified at a particular time, what those changes were and who made them.

17 Copyright © 2012 Embecosm Limited

References
[1] Git Documentation Available at http://git-scm.com/doc.

[2] CVS Documentation Available at http://ximbiot.com/cvs/manual.

http://git-scm.com/doc
http://ximbiot.com/cvs/manual

	Howto: CVS to Git
	Table of Contents
	Chapter 1. Introduction
	1.1. Target Audience
	1.2. Example
	1.3. Further information
	1.4. About Embecosm Application Notes

	Chapter 2. Mirroring a CVS repository
	Chapter 3. Splitting up the Repository
	Chapter 4. Conversion to Git
	Chapter 5. Building a Script
	Chapter 6. Summary
	Glossary
	References

