
Chiphack: for teens
Silicon chip design for teenagers

Dan Gorringe
Embecosm

Application Note 12. Issue 1
Publication date October 2014

http://www.embecosm.com

ii Copyright © 2014 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Embecosm(www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com

iii Copyright © 2014 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. What is an FPGA? .. 1
1.2. Target Audience .. 1
1.3. Difference to software design .. 1
1.4. What you will need ... 1

2. Getting Quartus Going .. 2
2.1. What is Quartus? ... 2
2.2. Quartus for Windows .. 2
2.3. Quartus for Linux ... 2

3. Getting Something Running .. 3
3.1. LEDs ... 3
3.2. Binary ... 3

4. Computer Logic ... 5
4.1. Addition .. 5

4.1.1. Logic Gates .. 5
5. Counters Projects .. 8

5.1. Manual Counter ... 8
5.2. Automatic Counter ... 9

5.2.1. Clocks .. 9
5.2.2. Implementing the Counter .. 10

5.3. Fibonacci Counter .. 11
6. Our Lock ... 13

6.1. What is a state machine? ... 13
6.2. Our first State machine .. 13

7. UART ... 20
7.1. What is a UART? .. 20
7.2. Hello? world? .. 20
7.3. Getting it to run on the screen ... 23

8. OpenRISC and SoC ... 25
8.1. What is OpenRISC? .. 25
8.2. What is a SoC? ... 25
8.3. Installation .. 25

8.3.1. General System Tools ... 26
8.3.2. OpenRISC GNU tool chain precompiled for 32-bit linux 26
8.3.3. Quartus Tools .. 26
8.3.4. Icarus Verilog and GTKWave .. 26
8.3.5. OpenOCD ... 26
8.3.6. FuseSoC ... 27
8.3.7. orpsoc-cores ... 27

8.4. Waves ... 28
8.4.1. Hello? Again? ... 28
8.4.2. Waveform ... 28

8.5. Running on the DE0 Nano .. 29
8.5.1. USB to UART patch .. 29
8.5.2. Programming the board .. 29
8.5.3. Connecting the debug proxy ... 30
8.5.4. Rebuilding our program ... 30
8.5.5. Openning a terminal .. 30
8.5.6. Connecting the debugger .. 30
8.5.7. Running Linux on our FPGA .. 31

Glossary ... 32

iv Copyright © 2014 Embecosm Limited

References .. 33

v Copyright © 2014 Embecosm Limited

List of Figures
3.1. Binary representations of numbers .. 4
4.1. Symbols for different logic gates ... 6
7.1. USB to UART connector. .. 24
8.1. Example of a wave trace .. 29

1 Copyright © 2014 Embecosm Limited

Chapter 1. Introduction
Chiphack [1] is a workshop which teaches the basics of silicon chip design. In this application
note it has been redesigned to allow teenagers to learn silicon chip design.

1.1. What is an FPGA?
A Field Programmable Gate Array (FPGA) is basically a code-your-own circuit board in which
you can design anything for hardware. To describe our design, we use a Hardware description
language (HDL), and in this case we will be using Verilog. The goal of this is for teens to come
away with enough know-how to be interested and be able to learn more about both FPGAs
and computer science.

1.2. Target Audience
This guide is for teenagers who have an interest in computing. No previous knowledge of FPGAs
or even programming/computing is needed, so therefore should be suitable for most people
with an attention span and a minimal sense of humour.

1.3. Difference to software design
So what is the difference between this, and learning other computer languages such as Java
or C? With Verilog you are learning to work with hardware, where unlike software devlopment,
everything happens at once. It therefore needs to be approached differently and strange things
may happen if you forget: Verilog is Parallel.

1.4. What you will need
1. An FPGA development board. I will be using a Terasic DE0 Nano (see [6]). If you wish

to use a different board you will may need different tools to begin, though the concepts
are common to any FPGA you may use.

2. A laptop or PC. This is used to program the device via USB.

3. An Internet connection

4. Willingness to learn

2 Copyright © 2014 Embecosm Limited

Chapter 2. Getting Quartus Going
2.1. What is Quartus?
Quartus is the Verilog compiler that we will be using to build our projects.

2.2. Quartus for Windows
For this you will need: a computer running Windows, a CD with Altera's Quartus software[4]
, a drink/snack and an Internet connection. (If you don't have the CD to hand, you can grab
the software online, making sure to get the web edition.)

1. Put in the CD, and run the setup.exe to install.

2. Wait for installation to complete. Get snack/drink (this will take ages).

3. Download Altera's Windows USB blaster driver[12] (to save time later).

4. Download the CP210x USB to UART Bridge Driver[9] and PuTTY terminal application
[7]. These will be used in the examples to set up a serial connection to the DE0 Nano.

5. Download the examples (.zip format) from chiphack.org[1].

2.3. Quartus for Linux
For this you will need: a computer running Linux, CD with Altera's Quartus software[4], a
drink/snack and an Internet connection. (If you don't have the CD to hand, you can grab the
software online, making sure to get the web edition.)

1. Put in the CD, and run setup.sh.

2. Wait for installation to complete. Get snack/drink (this will take ages).

3. Download Altera's Linux USB blaster driver. [10]

4. Download the examples (.zip format) from chiphack.org[1].

Note
By default, to the board you will need root permissions (very important). Don't be
mistaken by being able to follow the rest of the tutorial without doing so. When you
first open the tools after installation, the tools will be run as root.

3 Copyright © 2014 Embecosm Limited

Chapter 3. Getting Something Running
3.1. LEDs
Open Quartus[4], go to File > Open Project then find the sample project DE0_NANO[6] from
the .zip you downloaded as part of Getting Quartus Going.

Note
If you are running Linux you will need to rename .sdc to .SDC(note capitials).

Next open the .v file and add it to the project.

If you run this project as is, nothing will happen apart from the LEDs ceasing to glow nicely.
Therefore under REG/WIRE declarations write:

wire [07:00] leds;
assign LED[07:00] = leds;
assign leds = 1;

Next run the assembler (very important), followed by the programmer. Ensure hardware is set
to USB-Blaster, add the .sof file and press "start" (for best/any results have the DE0 Nano
plugged in).

Note
You may have to change the dropdown in the Tasks window from the Full design
flow to Compilation.

3.2. Binary
“There are 10 types of people in this world. People who understand binary, and those who
don't.”

On the strip of LEDs you can see that 1 is represented by the first led lighting up. If we change
the assign leds to equal 2 and run it, we see that the second LED lights up, and if we change
it to 3 then both the first and the second LEDs light up. This is because these are represented
in binary.

Binary is made up of 0s and 1s, and each column represents a different number, the first
being 1, second being 2, third being 4, then 8 and 16 and so on. With these numbers you
can make any other number for example 19 can be represented as 10011, as 16 + 2 + 1 =
19 (see Figure 3.1).

4 Copyright © 2014 Embecosm Limited

Figure 3.1. Binary representations of numbers

5 Copyright © 2014 Embecosm Limited

Chapter 4. Computer Logic
When programming in Verilog, you are designing hardware, therefore it is important you can
understand how it works, so what is a computer's 'logic'?

To begin with computers are effectively complex circuit boards, they use wires to transfer
inputs, however a wire can only be in 2 states: on (1) or off (0).

4.1. Addition
Adding numbers together on a calculator is easy, but how is it done? As we have already
found out, computers use binary. Therefore we must first see what the sums would look like
in binary, or atleast the inputs and outcomes.

01 one
01 plus one
__
10 two

01 one
00 plus zero
__
01 one

010 two
010 plus two
__
100 four

With this we can spot a pattern, which we can use to make a basic calculator. If there is a
single 'one' then it will display that else if there are two 'ones' then you shift over the 'one'.
For example:

010 two
001 plus one
__
011 three

4.1.1. Logic Gates
To then create this we would have to use logic gates. A logic gate is a building block for
manipulating inputs into outputs, for example a NOT gate will take in a '0' and output a '1'.
Other gates, use 2 inputs, though only produce 1 output. For example an AND gate will only
set its output on if both of its inputs are on. You can probably guess what an OR gate does:
if at least one input is 1, then the output is 1. You could use an XOR gate, which will only
output '1' if only one of its inputs are '1' not both.

6 Copyright © 2014 Embecosm Limited

Note
You can use gates such as NAND which is both NOT and AND so if will output 1 if
both input wires are not 1. The same applies for NOR and XNOR.

Logic gates are normally explained through diagrams, such as those found in Figure 4.1.

Figure 4.1. Symbols for different logic gates

7 Copyright © 2014 Embecosm Limited

For our basic calculator, we will be able to add by saying there are either zero, one or two for
each binary digit. We will have two inputs per binary digit, so for each digit you can check to
see if: its output should be one (with XOR) or if both are on (with AND), if both are down, add
one to the the next digit, if it is on its own, make the output for said wire '1'.

Note
Using the popular game Minecraft, and its redstone mechanic you can create
computer logic. It's not too hard to create a working calculator such as this.

8 Copyright © 2014 Embecosm Limited

Chapter 5. Counters Projects
5.1. Manual Counter
First we will make a counter which goes up on our command alone. For this we need an empty
.v file, so load up DE0_NANO.v[6] and empty it. For this project, we will be learning how to make
a .v file from the beginning, and to start we need to declare a module, which is done like this:

module DE0_NANO(LED,KEY);

More generally the following format is used:

 module <module name> (<list on inputs and outputs>);

First we declare the name of the module to be DE0_NANO , as the top-level module needs to
be the name of the project. We next declare the inputs and outputs used by the module, fully
stating which are inputs and which are outputs.

input [01:00] KEY; // we then declare that there are two buttons
output [07:00] LED; // and 8 LEDs

We then need to create our registers and wires, but first it is important to understand what
the difference between these are. A wire can not store data, it is either on or off, whereas a
register can store data.

 wire [07:00] leds_out;
 reg [07:00] counter;

We then need to assign our registers to their outputs:

assign leds_out = counter; // note: a comment is simply two
assign LED[07:00] = leds_out[07:00]; // slashes, and creates a comment
assign add = KEY[01]; // for the rest of the line

Note
We can assign wires to registers straight away. All we need to do is add an equals
sign followed by what its going to be assigned to, followed by a semicolon. For
example we could have said:

wire [07:00] leds_out = counter;

9 Copyright © 2014 Embecosm Limited

Then we need to create an initial statement so that our register starts with a known value,
as otherwise it would be random.

initial counter = 1

/* Note there are also block comments that comment out the entire
 area between them and is simply a slash and a star.
 */

Once we have declared all our wires, registers and infrastructure we have to write the code
that does things, which in this case is a counter that works manually, on the press of a key.
We start this using an always block: within a begin and end, you state what will happen every
posedge (positive edge) clock, or whatever you chose (you can also use negedge).

always @(posedge add) begin
 counter <= counter + 1;
end

Note
Here you can see that we have used '<=', which represents “will become”. This
means that on the next “add”, counter will be incremented by one. This called a
non-blocking assignment as it doesn't block execution while it occurs. It does not
happen straight away, as this may interfere with other commands in your code,
which would then create a race condition in the hardware. For example if you have
an if (count == 1) but if counter = count + 1 then this would happen straight
away and count would not equal 1 when you want it to.

Make sure to always use non-blocking assignments.

end module

The end module is not for the always block but instead finishes the module we started at
the beginning, it is very important to have enough ends and end modules, as well as keeping
them properly indented so your code is easily read. Now when we run this we should get a
lovely manual counter. What should happen is that every time that we press down on the add
button the variable of count will go up by one and then the leds will display the count.

5.2. Automatic Counter
Since we have created a manual counter and we are getting of bored of trying to find a pen to
press down on KEY[01], it is time we made an autonomous counter!

5.2.1. Clocks

For this we will be using a clock, but first what is a clock? (note: Not the one you find on
the wall). In hardware, a clock is less of a clock more of a crazy metronome for fans of sabre
dance[11], but instead of sound it outputs ones and zeros. A clock changes from 0 to 1 and
back inside a cycle. This is what changes when you hear about the 'speed' of a computer, for

10 Copyright © 2014 Embecosm Limited

example in the fastest i7 processor, a cycle will happen 3,800,000,000 (a very big number)
times a second! However clocks are not perfect, they don't precisely go up on every cycle instead
they slope, therefore making a positive and a negative edge, positive being from 0 to 1 and
negative the opposite.

5.2.2. Implementing the Counter

If we take the code we have just written we can change the line which tells us on KEY[01] do
this to on CLOCK_50. Though first we will need to create CLOCK_50 as an input of the module.
It is named this as of the clock in the chip runs at 50 MHz. So the module will become:

module DE0_NANO (LED,KEY,CLOCK_50) // note we do not have to use
 // all of the inputs
 input [01:00] KEY;
 input CLOCK_50;
 output [07:00] LED;

and now we can change the trigger in the always block to CLOCK_50.

always @(posedge CLOCK_50)
 count <= count +1

However if we now run this we will see 255 displayed on the leds, this is because the clock is
going so fast that we cannot even see it count, therefore to fix it we will use wider registers:
we will change our count register to be 32 bits wide.

 reg [31:00] count;

If we were to run this we would get the same result as previously. However if we then stated
that we wanted the LEDs to only show the output of the highest 8 digits, it will appear as if
the clock is going slower. We create this by only selecting a small amount of the register, the
highest 8 digits. Imagine that there are also another 24 LEDs to the left/right of your display.

 assign leds_out = count[31:24]

If we now run this we will see that the leds will now count slowly. Note you can change the
registers to create a slower or faster clock if you wish.

However with this we have to command over what happens, with no control to stop the clock.
We can reintroduce KEY[01] to stop and then restart the counting. This is done by adding
a new register called go and if statements to declare when and when not to run. Firstly we
need to add a register.

 reg go;

11 Copyright © 2014 Embecosm Limited

As you can see we don't need to specify the size of our go register as is only being used as 0
and 1. The default size of 1 bit is sufficient.

Then we introduce the KEY[01] and by pressing once it will turn go on, and then again it will
turn the count of.

 always @(posedge KEY[01]) begin
 if (go == 1)
 go <= 0;
 else
 go <= go + 1;
 end

We then add if statements to the posedge of the clock to stop the count once go is 0.

 always @(posedge CLOCK_50) begin
 if (go == 1)
 count <= count + 1;
 if (go == 0)
 count <= 0;
 end

Now once compiled and run you should have an automatic counter at your control, *insert
evil laugh here*.

5.3. Fibonacci Counter
The Fibonacci sequence is a sequence in which the subsequent number is the sum of the
previous for example, the start would be 0 + 1 = 1 and then 1 + 1 = 2 and then 1 + 2 = 3 and
so on. This is achieved similarly to the counters project, however as we need to remember the
previous count, we therefore need to start with 2 registers.

 reg [07:00] pcount, count; // pcount represents previous count

Note
You can create more than one register at a time by placing in commas, we will then
use the wires and assigns used for the normal count .

 wire [07:00] leds;
 assign LED[07:00] = leds;
 assign leds = count;
 assign reset = ~KEY[0];
 assign next = ~KEY[1];

Now we have to write the code to create a Fibonacci sequence.

12 Copyright © 2014 Embecosm Limited

 always @(posedge next or posedge reset) begin
 if (reset == 1'b1)begin
 count <= 0;
 end
 else begin // else would be equal to if on next
 count <= count + pcount;
 pcount <= count;
 if (count == 0) begin // need to change otherwise the
 // answer will always be 0
 count <= 1; // this applies to both the reset and starting
 end
 end
 end

In this example, an always block which contains 2 possibilities is used, one for each KEYs
begin pressed down individually this is so that the variables can be controlled with both keys.
First I created a reset and then I made count 1, as if it were zero it could not then create
the sequence. (Technically it works, but is a little boring). So you need to make sure you can
set the initial values, and then you create the sequence: count becomes previous count plus
count, and previous count will become count. (Am I the only one who has an urge to watch
a vampire movie?)

13 Copyright © 2014 Embecosm Limited

Chapter 6. Our Lock
Out next project is a lock to keep our secret number safe behind a 4 digit code. However we
will aproach this by a different method; we will work out how to implement this using a state
machine.

6.1. What is a state machine?
A state machine is a machine which represents a number of different states. These help us
create solutions to complex questions by representing it as a set of states where each does one
or two simple functions. The next state is chosen based on the inputs to the state machines
and the outputs are set depending on the current state.

6.2. Our first State machine
Our first step will be to draw out our state machine so we are completely clear how it will work,
making sure to name our states in a meaningful way.

14 Copyright © 2014 Embecosm Limited

Next we define these names and associate these with a number. We can use the names in
place of the number when writing the code that drives out state machine. However also for
this project we will need to create another slow clock, so we need to define some other stuff.
We will be making our 4 digit lock by having the LEDs light up a single light to represent such
number, one key will be used to move this one place to right and the other will be used to
enter the digit, if all 4 digits are correct we will then have it display our top secret message,
or if incorrect have it show nothing at all.

15 Copyright © 2014 Embecosm Limited

`define STATE_INITIAL 10'd0
`define STATE_CORRECT_1 10'd1
`define STATE_CORRECT_2 10'd2
`define STATE_CORRECT_3 10'd3
`define STATE_WRONG_1 10'd4
`define STATE_WRONG_2 10'd5
`define STATE_WRONG_3 10'd6
`define STATE_UNLOCKED 10'd7
`define STATE_LOCKOUT_CHECK 10'd8
`define STATE_LOCKOUT 10'd9
`ifdef SIMULATE
`define COUNTER_SIZE 8 // 32 bits // for later, when we use GTKWave
`define SLOW_CLK_BIT 2 // 16th bit // as will not need to be visible
`else
`define COUNTER_SIZE 32 // 32 bits // but we kind of what that now
`define SLOW_CLK_BIT 20 // 16th bit
`endif

We have defined these with names as is easier for us to remember, as otherwise we would
have to remember that 4'd7 is equal to unlocked and other general nastiness of the sort. Next
we need to define our inputs and outputs.

module DE0_NANO (CLOCK_50,KEY,LED);
 input CLOCK_50;
 input [01:00] KEY;
 output [07:00] LED;

Now we can work on the slow clock, which is needed so that we can see what is running, we
will start by using somebody else's open source code.

As you can see during the code we use a dummy_reset. This is because the code we started
with used a reset based on a key. As we are using both keys already and do not need a reset
key, we therefore need something to replace the reset in the code that doesn't affect anything.

16 Copyright © 2014 Embecosm Limited

`ifdef SIMULATE
 `define COUNTER_SIZE 8
 `define SLOW_CLK_BIT 2
`else
 `define COUNTER_SIZE 32
 `define SLOW_CLK_BIT 20
`endif

 reg [`COUNTER_SIZE-1:00] clkcount;
 assign slow_clock = clkcount[`SLOW_CLK_BIT-1]; // you can see with '`'
 reg dummy_reset; // we refer to defines
 initial dummy_reset = 0;

 edge_detect ed_0 (.CLK(slow_clock),
 .RST (dummy_reset),
 .IN (next),
 .OUT (next_ed));
 edge_detect ed_1 (.CLK (slow_clock),
 .RST (dummy_reset),
 .IN (enter),
 .OUT (enter_ed));

 always @(posedge CLOCK_50) begin
 if (dummy_reset == 1'b1) begin
 clkcount <= 0;
 end
 else begin
 clkcount <= clkcount + 1;
 end
 end
endmodule

17 Copyright © 2014 Embecosm Limited

module edge_detect(
 input CLK,
 input RST,
 input IN,
 output OUT);

 reg a, b;
 // the edge detect signal is (b AND (NOT a))
 assign OUT = a & !b;

 always @(posedge CLK) begin
 // it's always good to have a reset condition, otherwise
 // the state of the register will show up as undertemined
 // in simulation ('x')
 if (RST == 1'b1) begin
 a <= 0;
 b <= 0;
 end
 else begin
 a <= IN;
 b <= a;
 end
 end
endmodule

Now we can create all the registers and wires needed for our states. Additionally, we will need
our normal LED ones, a count, as well as lockout, nextlockout, state and nextstate. We will
be using the edge detect on our keys so that we get a proper result, as keys/buttons don't
work how you would expect them to; instead of nicely going up once, they often spike, and
then reach the normal level, therefore sometimes creating 2 pulses.

 reg [07:00] ledscount;
 reg [03:00] lockout,nextlockout;
 reg [02:00] count;
 reg [15:00] state,nextstate;

 wire next, enter;
 wire next_ed, enter_ed; // 'ed' stands for edge_detect

 assign LED[07:00] = ledscount[07:00]; // which LEDs will be lit up
 assign next = ~KEY[00] ; // to scroll through the leds
 assign enter = ~KEY[01] ; // to select which value to enter

 initial lockout = 0;
 initial state = `STATE_INITIAL;
 initial nextstate = `STATE_INITIAL;
 initial count = 0;

Now we move onto the code that manages states, what the states do but also which they move
to under what conditions. First we start with our initial state, it will need to have the positive

18 Copyright © 2014 Embecosm Limited

edge of the next key move the leds along 1 slot and to know which key is correct, so it can
make the next state STATE_CORRECT_1 or STATE_WRONG_1 depending on if the value is correct.

 always @(posedge slow_clock) begin
 if (state = `STATE_INITIAL) begin
 ledscount <= 3'd1 << count;
 if (next_ed) begin
 count <= count + 3'd1;
 end
 else if (enter_ed) begin
 if (count == 3'd3)
 nextstate <= `STATE_CORRECT_1
 else if (count != 3'd3)
 nextstate <= `STATE_WRONG_1
 end
 end

As you can see in this example, I have used 3'd3. This represents (in reverse order) a number
3, in decimal, 3 bits long. In general this is <size>'<type><number>. Therefore you can see the
first digit of this code is the number 3. This is then repeated for the next two states, replacing
the nextstates. The following represents STATE_CORRECT_3.

 if (state == `STATE_CORRECT_3) begin
 ledscount <= 3'd1 << count;
 if (next_ed) begin
 count <= count + 3'd1 ;
 end
 else if (enter_ed) begin
 if (count == 3'd7)
 nextstate <= `STATE_UNLOCKED;
 else if (count != 3'd7)
 nextstate <= `STATE_LOCKOUT_CHECK;
 end
 end

You can see in this one that if the value is correct, instead of moving to STATE_CORRECT_4,
it has gone to STATE_UNLOCKED. However if you get it wrong it doesn't go straight back to the
initial state, but instead goes to a lockout check. This checks if lockout is 2 and if not adds
1 to lockout. Additionally, if lockout is 2 then we move to STATE_LOCKOUT, otherwise it is sent
to STATE_INITIAL so that another attempt to enter the pass code can be made (my pass code
is not 1337).

We now need to make our STATE_WRONG states. These are purely in place to prevent people being
able to guess the code, so needs to have have no notable difference to the others, so needs the
LEDs to be able to move from left to right and to move forward one, and once enter is pressed
move to the next state until 4 digits have been entered. In order to make it harder to guess the
4 digit code, it will only ever link to the next STATE_WRONG state or to STATE_UNLOCKED_CHECK.
You will need to make your own versions or STATE_WRONG_2 and 3 linking to the appropriate
places, such as the following.

19 Copyright © 2014 Embecosm Limited

 if (state == `STATE_WRONG_1) begin
 ledscount <= 3'd1 << count;
 if (next_ed) begin
 count <= count + 3'd1 ;
 end
 if (enter_ed) begin // go to `STATE_WRONG_2
 nextstate <= `STATE_WRONG_2;
 end
 end

We now need to write the lockout and unlocked states, first starting with STATE_LOCKOUT_CHECK
as this will be the most difficult. In this state, you need to check that lockout is not 2 (this
gives the unlocker 3 opportunities as on his/her first go round he/she will have 0 lockouts,
on his/her second 1, and on his/her third he/she will have 2, and if he/she gets to the end
he/she will then will be locked out). If lockouts is set, the next state is set to lockout, if it is
not, we make nextlockout equal to lockout plus 1, and then transition to the initial state.

 // How many times did we get it wrong?
 if (state == `STATE_LOCKOUT_CHECK) begin
 count <= 0; // will reset number
 if (lockout == 4'd2) begin
 nextstate <= `STATE_LOCKOUT; // has already had 3
 // incorrect attempts
 end
 else begin
 nextstate <= `STATE_INITIAL; // has had 2 or less
 nextlockout <= lockout + 4'd1; // incorrect attempts

 end
 end
 // wrong more than 3 times
 if (state == `STATE_LOCKOUT) begin
 ledscount <= 255;
 end
 // Unlocked because 4 digits were entered correctly
 if (state == `STATE_UNLOCKED) begin
 ledscount <= <mystery code>;
 end

Remember we need to make sure we state that on every clock cycle nextstate becomes state
and nextlockout becomes lockout. We then finish with ending the module.

 state <= nextstate;
 lockout <= nextlockout;

endmodule

It should now work, making sure you have correctly set your code, you can now keep a number
up to 255 vaguely secure from another bunch of teenagers, hurrah!

20 Copyright © 2014 Embecosm Limited

Chapter 7. UART
7.1. What is a UART?
A Universal Asynchronous Receiver/transmitter (UART) is a simple bit based method of
transferring data between machines. A method of communicating via serial communication
to a computer, or to a peripheral.

7.2. Hello? world?
Our first UART project shall be to transmit “Hello, world!” to the monitor, so first we need to
create the UART transmitter on the FPGA. We create a register to hold the state of our transmit
state, one for the data we want to transmit and one for the word state.

 reg [3:0] transmit_state; // will be used like a state machine
 reg [13:00] word_state; // will be used to determine where
 // in the sentence we are
 reg [07:00] transmit_data;

We will also be transmitting at 115200 baud so we will need to use a clock divider register to
create a clock that runs at the right speed.

 reg [09:00] clock_divider_counter
 reg uart_clock;

For the clock divider, we divide the clock by 217, as this roughly goes into 50,000,000 230400(2
x 115200) times (this is because we will need a posedge for our UART).

 always @(posedge CLOCK_50) begin
 if (reset == 1'b1) // reset if reset button hit
 clock_divider_counter <= 0;
 else if (clock_divider_counter == 217) // reset if too high
 clock_divider_counter <= 0;
 else
 clock_divider_counter <= clock_divider_counter + 1;
 end

 always @(posedge CLOCK_50) begin
 if (reset == 1'b1)
 uart_clock <= 0;
 else if(clock_divider_counter == 217)
 uart_clock <= ~uart_clock;
 end

We then create the code that creates our message. This will be implemented as a state machine,
but this time a case statement will be used to implement the state machine.

21 Copyright © 2014 Embecosm Limited

 always @(posedge uart_clock or posedge reset) begin
 if (reset) begin // Reset to the "IDLE" state
 transmit_state <= 0;
 word_state <= 1;
 UART_TX <= 1; // The UART line is set to '1'
 // when idle, or reset
 end

Firstly we create the reset condition. If we are in reset it will then set transmit_state,
word_state and UART_TX and not do anything else in the always block. Once we are out of reset
we can process the main logic as follows:

 else begin
 // What follows is the skeleton of the state machine to control
 // the bits going onto the UART transmit line.
 // You will want to, from the idle state:
 // 1. detect the pushbutton press and go to the the start bit state
 // 2. then the 8 data bits (LSB first)
 // 3. finally the stop bit
 // 4. return to this state ready for the next transmit
 case (transmit_state)
 0:
 begin
 if (key1_edge_detect == 1)
 transmit_state <= 1;
 end
 1:
 begin
 UART_TX <= 0;
 transmit_state <=2;
 // Start bit state, and progress onto the next state
 end
 2,3,4,5,6,7,8,9:
 begin
 UART_TX <= transmit_data[transmit_state - 2];
 transmit_state <= transmit_state + 1;
 // Data bits
 // when transmit_state is 2 we want transmit_data[0]
 // when transmit_state is 3 we want transmit_data[1]
 // ...
 // when transmit_state is 9 we want transmit_data[7]
 /* Fill me - assign appropriate data bit to UART_TX here
 - don't forget to continue incriminating the
 state
 */
 end

We then make sure that our word state stays valid by checking if it is 14, and if not making
sure to add 1 to the word_state.

22 Copyright © 2014 Embecosm Limited

 10:
 begin
 UART_TX <= 1;
 transmit_state <= 0;
 if (word_state == 14) begin
 word_state <= 1;
 end
 else
 word_state <= word_state + 1;

To send our message, we look at word_state. If it equals for example 1, transmit_data will
become 'H' or the next character in our message. Characters are sent using a hexadecimal
representation, therefore you will need an ASCII table [5] to look up which codes you want. I
wonder how many pop culture references you can display solely using this FPGA.

Note
This is still inside the always block.

 begin
 if (word_state == 1)
 transmit_data <= 8'h48; //H
 if (word_state == 2)
 transmit_data <= 8'h65; //e
 if (word_state == 3)
 transmit_data <= 8'h6c; //l
 if (word_state == 4)
 transmit_data <= 8'h6c; //l
 if (word_state == 5)
 transmit_data <= 8'h6f; //o
 if (word_state == 6)
 transmit_data <= 8'h2c; //,
 if (word_state == 7)
 transmit_data <= 8'h20; //
 if (word_state == 8)
 transmit_data <= 8'h57; //W
 if (word_state == 9)
 transmit_data <= 8'h6f; //o
 if (word_state == 10)
 transmit_data <= 8'h72; //r
 if (word_state == 11)
 transmit_data <= 8'h6c; //l
 if (word_state == 12)
 transmit_data <= 8'h64; //d
 if (word_state == 13)
 transmit_data <= 8'h21; //!
 if (word_state == 14)
 transmit_data <= 8'h20; //
 end

23 Copyright © 2014 Embecosm Limited

Next we clean up, and finish the code, by introducing a default condition it shouldn't reach,
but if it does it will go back to the idle state, also setting the LEDs and the edge_detect state.

 end
 default:

 transmit_state <= 0;
 endcase
 end
 end

 always @(posedge uart_clock)
 key1_reg <= KEY[1];

 assign key1_edge_detect = ~KEY[1] & key1_reg;
 // Detect the change in level
 assign LED = transmit_data; // or change to what you

 endmodule

Always remember to finish modules with an endmodule.

7.3. Getting it to run on the screen
You will need to use one of Embecosm's USB UARTs and have it plugged in correctly to the
board but also into the computer you are want to display the message on. See Figure 7.1.

24 Copyright © 2014 Embecosm Limited

Figure 7.1. USB to UART connector.

On Windows, to view the UART you will need to get a terminal — we suggest PuTTY. Once
loaded you will need to change the connection type to serial, change the serial line to the
address of the device (for example COM3, this may differ per machine, you may need to look
it up under devices), and the speed to 115200.

For Linux you will need to be in the dialout group and then you can use the command below
in the terminal to display your message.

$ screen /dev/ttyUSB0 115200

25 Copyright © 2014 Embecosm Limited

Chapter 8. OpenRISC and SoC

!
Caution
This is more advanced work, and you are advised to use Linux. There will be no
Windows support, so consider a using a virtual machine.

8.1. What is OpenRISC?
No it is not the open source remake of the Parker Brothers board game, instead OpenRISC
stands for open reduced instruction set computer and is a project which has created a
computer architecture and implementation and tools for its development. It is a design
specification for an open source processor.

The OpenRISC 1000 architecture has a 32-bit instruction word and either 32-bit or 64-bit
data. As it is reduced instruction set, its instructions are relatively simple like:

 add register 3 with register 6 and store in register 8

or

 load the data at the memory address held in register 4 into register 5

Whereas a more complex instruction set computer (CISC) may be capable of doing much more
in a single instruction:

 load the data at the memory address in register 2, increment it, compare
 with zero, and store back at the address held in register 4 while
 incriminating both registers 2 and 3

8.2. What is a SoC?
A System on (a) Chip. When we bring this together with our own synthesisable models of
peripheral controllers, communications I/O and system infrastructure we have a system
capable of many things. Typically the brains of the system is the programmable CPU.

8.3. Installation

!
Warning
This will take a long time.

To install you will need:

1. The OpenRISC GNU tool chain (bare metal, newlib-basic, or1k-elf-)

2. The FuseSoC devlopment environment

3. Icarus Verilog and GTKWave

26 Copyright © 2014 Embecosm Limited

4. The Altera Quartus tools (for synthesis, board programming)[4]

5. The OpenOCD debug proxy

8.3.1. General System Tools
These will be necessary for various parts of the flow. On Debian or Ubuntu systems you can
install them with:

sudo apt-get -y install build-essential make gcc g++ flex bison \
patch texinfo libncurses5-dev libmpfr-dev libgmp3-dev libmpc-dev \
libzip-dev python-dev libexpat1-dev libftdi-dev libtool autoconf \
libftdi-dev subversion libelf-dev elfutils

8.3.2. OpenRISC GNU tool chain precompiled for 32-bit linux

You will need to find the or1k-elf toolchain online and extract it in the /opt directory, creating
the directory or1k-toolchain. These tools will need to be in your PATH in order to use, them,
so the following needs to be run to enable this by default.

echo "# OpenRISC tool chain path" >> ~/.bashrc
echo "export PATH=\$PATH:/opt/or1k-toolchain/bin" >> ~/.bashrc

Note
If this does not work, consult the Chiphack Wiki.

8.3.3. Quartus Tools
You should already have these installed, however if you have not visit their website and
download and install Altera Quartus II Web Edition.

These can also be added to your PATH using the following, noting to change the version number
to the one you have installed:

echo "# Altera Quartus tools path" >> ~/.bashrc
echo "export ALTERA_PATH=/opt/altera/13.1" >> ~/.bashrc
echo "export PATH=\$PATH:\$ALTERA_PATH/quartus/bin" >> ~/.bashrc

8.3.4. Icarus Verilog and GTKWave
These are both open source projects, and can be easy installed from any modern Linux
distribution. Otherwise you can follow an install guide from the Icarus Verilog wiki.

sudo apt-get install iVerilog gtkwave

8.3.5. OpenOCD
OpenOCD is the debug proxy we'll use to talk to the board over JTAG.

27 Copyright © 2014 Embecosm Limited

Download the source to $HOME/or1k

 git clone https://github.com/openrisc/openOCD.git

Go into the OpenOCD directory and, bootstrap it:

./bootstrap

You may need to install libtool and autoconf via your package manager to run the bootstrap
process.

Once that is finished, configure and compile:

./configure --enable-usb_blaster_libftdI --enable-adv_debug_sys \\
 --enable-altera_vjtag --enable-maintainer-mode
make
make install

Note
I suggest downloading and playing a game of greed in the wait (it takes along time).

sudo apt-get install greed
greed

8.3.6. FuseSoC
The SoC development tool is now needed.

Clone this from GitHub into $HOME/or1k

git clone https://github.com/olofk/fusesoc.git

Now go into fusesoc and run the following:

autoreconf -i
./configure && make
make install

8.3.7. orpsoc-cores
The OpenRISC set of configurations for FuseSoC to work with, needs to be downloaded next.

Clone this from GitHub into $HOME/or1k

git clone https://github.com/openrisc/orpsoc-cores.git

28 Copyright © 2014 Embecosm Limited

Hurrah, we did it! No more installs!

8.4. Waves

8.4.1. Hello? Again?

Now we will be writing something to run on the OpenRISC and for us to be able to debug
in GTKWave. Unlike software programming it is very hard to debug hardware, and viewing
the .vcd is as close to a debugger as you can get. This allows us to view the values of every
register and wire so therefore lets us understand what has occured. We start by writing a
simple program in a file called hello.c:

int main(void)
{
 printf("Hello world, from an OpenRISC system!\n");
 return 0;
}

We then compile it using the OpenRISC toolchain.

or1k-elf-gcc hello.c -o hello.elf

Then we can run it on a simulator using fusesoc.

fusesoc sim mor1kx-generic --elf-load hello.elf

Note
If it doesn't run correctly make sure you have all the tools installed.

8.4.2. Waveform

We can now inspect the program we have just run in GTKWave, which we installed earlier.
First we run it to produce a .vcd, which is a file that GTKWave can open.

fusesoc sim mor1kx-generic --elf-load hello.elf --vcd

This can then be opened with GTKWave

gtkwave build/mor1kx-generic/sim-icarus/testlog.vcd

The program should now load up. In the hierarchy browser (top left corner) expand orpsoc_tb
then dut. Then highlight mor1kx (the processor), this will now list the signals in the window
below. Select all signals beginning with iwbm and insert, then do the same for dwbm. To be able
to see properly, zoom in so you can see 100s of nanoseconds, similar to Figure 8.1:

29 Copyright © 2014 Embecosm Limited

Figure 8.1. Example of a wave trace

8.5. Running on the DE0 Nano
Now we will be building and then running the system on our FPGA.

8.5.1. USB to UART patch
We will modify the source for the DE0 Nano system in orpsoc-cores to support the use of the
Embecosm USB to UART board. Firstly download and apply the following patch:

wget http://goo.gl/xw74Aa
git am xw74Aa

The system's source is now suitable to work with the Embecosm USB to UART.

8.5.2. Programming the board
We will now build the image to be programmed onto the DE0 Nano. Note this will take a while.
From the or1k directory.

fusesoc build de0_nano

In the synthesis directory there is also a makefile recipe for programming the board:

fusesoc pgm de0_nano

Note
There are several things could go wrong here. The first is that the system JTAG
daemon running needs to be killed and the Altera version run instead, to do this
run:

30 Copyright © 2014 Embecosm Limited

killall jtagd
sudo /opt/altera/13.1/quartus/bin/jtagd

Another problem might be that the OpenOCD debugger is still using the JTAG/
USB port. Exiting OpenOCD will fix this.

Another could be basic permissions on the USB device and this may fix things:

sudo make pgm

8.5.3. Connecting the debug proxy
From the OpenOCD directory run the following:

sudo ./build/src/openocd -f ./tcl/interface/altera-usb-blaster.cfg \\
 -f altera-dev.tcl

8.5.4. Rebuilding our program
We are going to take the c code we wrote earlier and now recompile it to run on the DE0 Nano

or1k-elf-gcc hello.c -o hello_de0_nano.elf -mboard=de0_nano

8.5.5. Openning a terminal
Next open a terminal, like we did for the UART using the following:

screen /dev/ttyUSB0 115200

8.5.6. Connecting the debugger
We will be using a debugger, solely for running a program on the machine however these can
be used to stop a program executing at any time and evaluate the state of the machine. For
example we can look at the value of any variable in our code.

In a new terminal run the OpenRISC GNU Debugger (GDB) and specify the executable we
want to run:

or1k-elf-gdb hello_de0_nano.elf

Within GDB we tell it to connect to the port that OpenOCD is running on:

(gdb) target remote :50001

We can now access the system memory and registers, for example to look at the memory at
address zero, we use:

31 Copyright © 2014 Embecosm Limited

x 0x0

Now, to run the program, first we begin by:

(gdb) load

and then:

(gdb) continue

Hurrah, it works!

8.5.7. Running Linux on our FPGA
Congratulations on getting this far, but you have not finished yet… Now, instead of running
"hello world", we will run Linux *dramatic music*. but first we need to download it:

wget https://www.dropbox.com/s/bi5vx8kmqnjdldx/vmlinux-de0_nano

Now load it in the GDB as before, though this time with a couple of changes:

(gdb) file vmlinux_de0_nano
(gdb) load
(gdb) spr npc 0x100
(gdb) c

Look! it's moving. It's alive. It's alive...

However, unfortunately it is a embedded version of Linux, little is doable on it therefore it is
solely a bragging right, for now…

32 Copyright © 2014 Embecosm Limited

Glossary

Binary
A way of displaying numbers only using '1's and '0's.

DE0 Nano
The model of FPGA i have been using.

FPGA
Field Programmable Gate Array, are able to be changed using a HDL such as Verilog.

HDL
HDL stands for hardware description language, for example Verilog is a language which
is used to describe the FPGA

OpenRISC
A set of opensource design specifications for a processor, we shall be using an
implementation of it.

UART
A UART (Universal Asynchronous Receiver/Transmitter), used to communicate between
chips (not potatoes).

33 Copyright © 2014 Embecosm Limited

References
[1] Chiphack Repository Available at http://chiphack.org.

[2] Basic Logic Available at http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/
gatesfunc/index.html#orgate.

[3] Chiphack Wiki Available at https://github.com/embecosm/chiphack/wiki.

[4] Quartus Available at http://www.altera.co.uk/products/software/quartus-ii/web-
edition/qts-we-index.html.

[5] ASCII Table Available at http://www.asciitable.com/.

[6] DE0_NANO Available at https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593/.

[7] PuTTY Available at http://www.chiark.greenend.org.uk/~sgtatham/putty/.

[8] Icarus Verilog alternate install method Available at http://iVerilog.wikia.com/wiki/
Installation_Guide.

[9] CP210x USB to UART Bridge Available at http://www.silabs.com/products/mcu/pages/
usbtouartbridgevcpdrivers.aspx.

[10] Altera USB Blaster driver for linux Available at http://www.altera.co.uk/download/
drivers/dri-usb_b-lnx.html.

[11] Sabre Dance Available at http://www.youtube.com/watch?v=gqg3l3r_DRI.

[12] Altera USB Blaster driver for Windows Available at http://www.altera.co.uk/download/
drivers/usb-blaster/dri-usb-blaster-vista.html.

http://chiphack.org
http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/gatesfunc/index.html#orgate
http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/gatesfunc/index.html#orgate
https://github.com/embecosm/chiphack/wiki
http://www.altera.co.uk/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.co.uk/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.asciitable.com/
http://www.terasic.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://iVerilog.wikia.com/wiki/Installation_Guide
http://iVerilog.wikia.com/wiki/Installation_Guide
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.altera.co.uk/download/drivers/dri-usb_b-lnx.html
http://www.altera.co.uk/download/drivers/dri-usb_b-lnx.html
http://www.youtube.com/watch?v=gqg3l3r_DRI
http://www.altera.co.uk/download/drivers/usb-blaster/dri-usb-blaster-vista.html
http://www.altera.co.uk/download/drivers/usb-blaster/dri-usb-blaster-vista.html

	Chiphack: for teens
	Table of Contents
	Chapter 1. Introduction
	1.1. What is an FPGA?
	1.2. Target Audience
	1.3. Difference to software design
	1.4. What you will need

	Chapter 2. Getting Quartus Going
	2.1. What is Quartus?
	2.2. Quartus for Windows
	2.3. Quartus for Linux

	Chapter 3. Getting Something Running
	3.1. LEDs
	3.2. Binary

	Chapter 4. Computer Logic
	4.1. Addition
	4.1.1. Logic Gates

	Chapter 5. Counters Projects
	5.1. Manual Counter
	5.2. Automatic Counter
	5.2.1. Clocks
	5.2.2. Implementing the Counter

	5.3. Fibonacci Counter

	Chapter 6. Our Lock
	6.1. What is a state machine?
	6.2. Our first State machine

	Chapter 7. UART
	7.1. What is a UART?
	7.2. Hello? world?
	7.3. Getting it to run on the screen

	Chapter 8. OpenRISC and SoC
	8.1. What is OpenRISC?
	8.2. What is a SoC?
	8.3. Installation
	8.3.1. General System Tools
	8.3.2. OpenRISC GNU tool chain precompiled for 32-bit linux
	8.3.3. Quartus Tools
	8.3.4. Icarus Verilog and GTKWave
	8.3.5. OpenOCD
	8.3.6. FuseSoC
	8.3.7. orpsoc-cores

	8.4. Waves
	8.4.1. Hello? Again?
	8.4.2. Waveform

	8.5. Running on the DE0 Nano
	8.5.1. USB to UART patch
	8.5.2. Programming the board
	8.5.3. Connecting the debug proxy
	8.5.4. Rebuilding our program
	8.5.5. Openning a terminal
	8.5.6. Connecting the debugger
	8.5.7. Running Linux on our FPGA

	Glossary
	References

