AAP: An Altruistic Processor

A reference Harvard architecture for
embedded compiler development

Simon Cook

Jeremy Bennett

Edward Jones

Application Note 13. Issue 2.1
Publication date December 2015



ECOSM’

Legal Notice

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http:/ /creativecommons.org/licenses/by-sa/4.0.

This license means you are free to:
. Share—copy and redistribute the material in any medium or format;

. Adapt—remix, transform, and build upon the material,
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

. Attribution.—You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

. ShareAlike—If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

. No additional restrictions—You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

. Nothing in this license impairs or restricts the author's moral rights.

Note
\/ You do not have to comply with the license for elements of the material in the public
g domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

ii Copyright © 2015 Embecosm Limited


http://creativecommons.org/licenses/by-sa/4.0/

ECOSM’

Table of Contents

1. INtrOAUCHION .ovniiiiiiii et 1
1.1, ReVISION HISTOIY .uniniiiii ettt e eaee 1
2. Architecture DeSCTIPION ...cuiuiei et e en e eeane 3
2.1. Basic architectural features ...........cooooiiiiiiiiiiiiii 3
2.2. Event Handlifg ....c.ocoeiiiiii et 5
2.3. NOP BERAVIOT ..etiniiiiiiii ittt ens S
3. INSTIUCTIONS coiiiiiii et e aeaes 6
G T B A\ [0] - 1 o) o KPP PP 6
3.1.1. Assembler NOtation ....c..ceviuiiiiiiiiiiii e §)

3.2. Instruction Format .......ccooiiiiiiiiiii 6
3.3. Summary of INStIUCHONS .euuininiii et 8
3.3.1. 16-bit Instructions of AAP ..o e 8
3.3.2. 32-bit Instructions of AAP ...t 10

3.4. Detailed Descriptions of 16-bit ALU InsStructions ...........ceeveiiuiiiiiniiiininiinennenenne. 14
3.4.1. NOP: NO OPEratiOn ..c.cueuiuiuiiiininin i ettt e e e e enenes 14
3.4.2. ADD: Unsigned Add ......cooeeiiiiiiiiiee e 14
3.4.3. SUB: Unsigned Subtract ........cccovuiiiiiiiiiiii e 14
3.4.4. AND: Bitwise AND ...ttt 15
3.4.5. OR: BitWiS€ OR ..iiiiiiiiiiiiiii e 15
3.4.6. XOR: Bitwise EXCIUSIVE OR ....ccciiiiiiiiiiiiiiii e 15
3.4.7. ASR: Arithmetic Shift Right ... 16
3.4.8. LSL: Logical Shift Left ......coouiiiiiiii e 16
3.4.9. LSR: Logical Shift Right ..ot 17
3.4.10. MOV: Move Register to RegiSter ......c.coooiiiiiiiiiiiiirii e, 17
3.4.11. ADDI: Unsigned Add Immediate ........cccoooiiiiiiiiiiiiiiiiiiiiie e, 17
3.4.12. SUBI: Unsigned Subtract Immediate ........c..cooeoiiiiiiiiiiiiiiiiiiinen, 18
3.4.13. ASRI: Arithmetic Shift Right Immediate ............c..cooiiiiiiiii, 18
3.4.14. LSLI: Logical Shift Left Immediate ..........c.cooiiiiiiiiiiiiiiiiiiee, 19
3.4.15. LSRI: Logical Shift Right Immediate ...........c..cooiiiiiiiiiiiiiiens 19
3.4.16. MOVI: Move Immediate to RegiSter .......c..coveviiiiiiiiiiiiiiiiiiiii e 20

3.5. Detailed Descriptions of 16-bit Load/Store Instructions .........ccocveevenienieniennennes 20
3.5.1. LDB: Indexed Load Byte ......cccieiiniiiiiiiiiiiiiiiiiiii e 20
3.5.2. LDW: Indexed Load WoOrd ........ccoieiiiiiiiiiiiiiieie e 20
3.5.3. LDB: Indexed Load Byte with Postincrement ..........ccccceeeiiiiiiiiiniiiennennenn. 21
3.5.4. LDW: Indexed Load Word with Postincrement .........cc.ccoeeeviviiiiiiinenn.e. 21
3.5.5. LDB: Indexed Load Byte with Predecrement ...........ccocceveviniiniiiininiann.n. 22
3.5.6. LDW: Indexed Load Word with Predecrement ..........ccccceeiiiiiiiiiiiniennnnnen. 22
3.5.7. STB: Indexed Store Byte ......ccoiiiiiiiiiiiiiiie e 23
3.5.8. STW: Indexed Store WOrd ........ceeiiuiiiiiiiiiiiiieee e 23
3.5.9. STB: Indexed Store Byte with Postincrement ...........ccocoveveiiiiiiiiiiniennen. 23
3.5.10. STW: Indexed Store Word with Postincrement ..........c..coeeviiiiiiiinin.n. 24
3.5.11. STB: Indexed Store Byte with Predecrement ...........cc.coeevviiiiiiiiininninn.e. 24
3.5.12. STW: Indexed Store Word with Predecrement ...........c.ccoeevieniinieniinenne.n. 25

3.6. Detailed Descriptions of 16-bit Branch/Jump Instructions .........c.ccccceeeiieniennen. 25
3.6.1. BRA: Relative Branch ........ccoooiiiiiiiiiiiiii e 25
3.6.2. BAL: Relative Branch and Link ........cccoooiiiiiiiiiiiiiii e 26
3.6.3. BEQ: Relative Branch if Equal ......c.ccciiiiiiiiiiiiiiiiccceeeee e 26
3.6.4. BNE: Relative Branch if Not Equal ........cccccviiiiiiiiiiiiiiiiiieeee e 27
3.6.5. BLTS: Relative Branch if Signed Less Than ........ccccceeiiiiieiiiiniiniinenennt. 27
3.6.6. BLES: Relative Branch if Signed Less Than or Equal TO ........c..ccccceeneen.e. 28
3.6.7. BLTU: Relative Branch if Unsigned Less Than .......ccccceevveiiiiiiinininenn.. 28

iii

Copyright © 2015 Embecosm Limited



ECOSM’

3.6.8. BLEU: Relative Branch if Unsigned Less Than or Equal To ........c............ 28
3.6.9. JMP: ADSOIULE JUINIP .euirniniiiiiiiii ettt e en e eeaee 29
3.6.10. JAL: Absolute Jump and Link .....c.ccocoiiiiiiiiiii e 29
3.6.11. JEQ: Absolute Jump if Equal ......cccooiiiiiiiiiii e 30
3.6.12. JNE: Absolute Jump if Not Equal .........coooiiiiiiiiiii e 30
3.6.13. JLTS: Absolute Jump if Signed Less Than .......c..cooviiiiiiiiiiiiiinnnnn. 31
3.6.14. JLES: Absolute Jump if Signed Less Than or Equal To ........c..c.cceceeenats 31
3.6.15. JLTU: Absolute Jump if Unsigned Less Than .....c..cccceveieiiiiiiiininnnn. 31
3.6.16. JLEU: Absolute Jump if Unsigned Less Than or Equal To ..................... 32
3.7. Detailed Descriptions of 16-bit Miscellaneous Instructions ........c.ccccoeveiiieninenn, 32
3.7.1. RTE: Return from EXCEPLtiOn ......ccocoiuiiiiiiiiiiiiiiiiii e 32
3.8. Detailed Descriptions of 32-bit ALU Instructions ........ccoceeveiieiiiiiiiniiniiinennenenne. 33
3.8.1. NOP: NO OPETration ....cuieuiuiiniiiniiiiiiti ettt e e eeanen 33
3.8.2. ADD: Unsigned Add .....cccooiniiiiniiiii e 33
3.8.3. SUB: Unsigned SUbtract .......cccoiuiiiiiiiiiiiiii e 34
3.8.4. AND: Bitwise AND ...ttt 34
3.8.5. OR: BitwisSe OR ..ouiiiiiiiiiiiiiiiii ettt 34
3.8.6. XOR: Bitwise EXClUusive OR .....ccciiiiiiiiiiiiii e 35
3.8.7. ASR: Arithmetic Shift Right ... 35
3.8.8. LSL: Logical Shift Left ......cooeiiniiiiii e 36
3.8.9. LSR: Logical Shift Right .......cccciiiiiiiiiii e 36
3.8.10. MOV: Move Register to RegiSter .......c.ccocoiiiiiiiiiiiiiiiiiiiiiir e, 37
3.8.11. ADDI: Unsigned Add Immediate ........cccoeeiiuiiiiiiiiiiiiiiiiiiieeeeeene, 37
3.8.12. SUBI: Unsigned Subtract Immediate .......c..cccooeiiiiiiiiiiiiiiiiiiiiiineenes 37
3.8.13. ASRI: Arithmetic Shift Right Immediate ............coocooiiiiiiii, 38
3.8.14. LSLI: Logical Shift Left Immediate .......c..cocoieiiiiiiiiiiiiii e, 38
3.8.15. LSRI: Logical Shift Right Immediate ...........c..coeiiiiiiiiiiiiiiiiienes 39
3.8.16. MOVI: Move Immediate to RegiSter .........cccoiiiiiiiiiiiiiiiiiiiiireen, 39
3.8.17. ADDC: Unsigned Add with Carry .....cccoeuieniiiiiiiiiiiiiiiiee e 40
3.8.18. SUBC: Unsigned Subtract with Carry ......c..coooviiiiiiiiiiiiiiiiiiiiiineens 40
3.8.19. ANDI: Bitwise AND Immediate .......c.ccoeiiiiniiiiiiiiiiiiiiiir e 41
3.8.20. ORI: Bitwise OR immediate ........cccoeeviuiiiiniiiiiiiiiiieii e 41
3.8.21. XORI: Bitwise Exclusive OR Immediate ...........coeceeiiiiiiiiiiiiiiiinninen., 41
3.9. Detailed Descriptions of 32-bit Load/Store Instructions ........c..coeoveveiiiiinienen... 42
3.9.1. LDB: Indexed Load Byte ....c.cccoeuiiiiiiiiiiiiiii e 42
3.9.2. LDW: Indexed Load WoOrd ........cccooiiiiiiiiiiiiiiiiiiiiicc e 42
3.9.3. LDB: Indexed Load Byte with Postincrement ..........c.ccocoeiiiiiiiiiiniiinnt, 43
3.9.4. LDW: Indexed Load Word with Postincrement ...........c.cooeiiiiiiiiiiiinininn, 43
3.9.5. LDB: Indexed Load Byte with Predecrement ...........c..ccoceeiiiiiiiniininnenenne. 44
3.9.6. LDW: Indexed Load Word with Predecrement .........c..cccooieiiiiiiininian.. 44
3.9.7. STB: Indexed Store Byte ......ccviiiiiiiiiiiiiiiii e 44
3.9.8. STW: Indexed Store Word .........ccoeviiiiiiiiiiiiiiiiiiiiii e 45
3.9.9. STB: Indexed Store Byte with Postincrement .............c.ooiiiiiiiiiiiinininn, 45
3.9.10. STW: Indexed Store Word with Postincrement ...........c.coocoeoiiiiiiiinan.. 46
3.9.11. STB: Indexed Store Byte with Predecrement ............c..ccoiiiiiiiiiiinnnn, 46
3.9.12. STW: Indexed Store Word with Predecrement .........c....cocoeeiiiiiiiiniinn.. 47
3.10. Detailed Descriptions of 32-bit Branch/Jump Instructions ........c..c.ccoeeieneanen. 47
3.10.1. BRA: Relative Branch .......c.cccoooiiiiiiiiiiii e 47
3.10.2. BAL: Relative Branch and Link ........c.cooiiiiiiiiiiiiiin e 48
3.10.3. BEQ: Relative Branch if Equal .......c..cccoioiiiiiiiiiiiiiiieeeas 48
3.10.4. BNE: Relative Branch if Not Equal .........c.ccoooiiiiiiiiiiiiiien, 49
3.10.5. BLTS: Relative Branch if Signed Less Than .......c..ccceiiiiiiiiiiiiininn.. 49
3.10.6. BLES: Relative Branch if Signed Less Than or Equal To ........c..c............ 50

Copyright © 2015 Embecosm Limited



ECOSM’

3.10.7. BLTU: Relative Branch if Unsigned Less Than .........c.cocoeiiiiiiiiiiininen.. 50
3.10.8. BLEU: Relative Branch if Unsigned Less Than or Equal To ................... 51
3.10.9. JMP: ADSOIULE JUIMIP wuevrinininiiieii ettt en e 51
3.10.10. JAL: Absolute Jump and Link .........coooiiiiiiiiiiiiiiiieeee 52
3.10.11. JEQ: Absolute Jump if Equal .....cccviiiiiiiiiiiii e 52
3.10.12. JNE: Absolute Jump if Not Equal .......c.coiiiiiiiiiiiii e 52
3.10.13. JLTS: Absolute Jump if Signed Less Than ......c.ccccoeviiiiiiiiiiiiiinnnnn.. 53
3.10.14. JLES: Absolute Jump if Signed Less Than or Equal To ....................... 353
3.10.15. JLTU: Absolute Jump if Unsigned Less Than .......c..cccoeeveieiiinininenn.n. 54
3.10.16. JLEU: Absolute Jump if Unsigned Less Than or Equal To ................... 54
3.10.17. JMPL: Absolute JUmMpP LONg ..ccuveuiiiiiiiiiiiiiii e 55
3.10.18. JALL: Absolute Jump Long and Link ..........coociiiiiiiiiiiiinns 55
3.10.19. JEQL: Absolute Jump Long if Equal ......c.ccocoiiiiiiiiiiiiiiieeeene 56
3.10.20. JNEL: Absolute Jump Long if Not Equal .........ccocoeiiiiiiiiiiiiiiiinnee. 56
3.10.21. JLTSL: Absolute Jump Long if Signed Less Than ........c.ccccoeveiiieienn. 57
3.10.22. JLESL: Absolute Jump Long if Signed Less Than or Equal To ............. 57
3.10.23. JLTUL: Absolute Jump Long if Unsigned Less Than .......c.c..c..cccoeeneee. 358
3.10.24. JLEUL: Absolute Jump Long if Unsigned Less Than or Equal To ......... 358
3.11. Detailed Descriptions of 32-bit Miscellaneous Instructions ...........c..cc.ocoeevennee. 59
G ABI o ettt et et anes 60
4.1. Defined ReZISTEIS ..ouiiniiii ittt 60
4.2, Calling CONVEINTION ..euiuiiiiiii ettt et en e e eaeaenes 60

v Copyright © 2015 Embecosm Limited



ECOSM’

List of Figures

2.1, AAP ArChItECHUTIE ...noitiitiiii e e e e ettt aas 3
3.1. AAP 16-bit iNStruction fOrmats. ..o.oveiiiii i s 7
3.2. AAP 32-bit iNStruction fOrmats. ..o s 8

vi Copyright © 2015 Embecosm Limited



ECOSM’

List of Tables

3.1. 16-bit ALU INStIUCTIONS .euiuiiiiniinitii ettt et ettt et et et et et e e e e eanenne 8
3.2. 16-bit load/store iNSTIUCHIONS .c.iuiiiii e e 9
3.3. 16-bit branch/jump INStIUCHIONS ..c.iuiiiiii e 9
3.4. Miscellaneous 16-bit iNSTIUCHIONS ...vuiniiniiiiiii e 10
3.5. 32-bit ALU INSTITUCHIONS ..euitniiiiiiiiiiti ittt ettt ettt et e e e e e eanenne 10
3.6. 32-bit load/store INStrUCHIONS ...cuiuiiiii e 11
3.7. 32-bit branch/jump INStIUCHIONS ..c.iniiiiiii e 12

vii Copyright © 2015 Embecosm Limited



ECOSM’

Chapter 1. Introduction

AAP is a Harvard architecture specification designed for experimenting with various features
in compiler back ends. In particular it has features that are common within small deeply
embedded systems, such as a dearth of registers, word address code memory and pointers
that will not fit in an integer.

It is also designed to be easy to use in demonstrations and education/training. This includes
hardware and simulator implementation as well as the tool chain and library implementation.

The design is based on no processor in particular, although as an open hardware design, it is
inspired by the OpenRISC and RISC-V projects. There are features drawn from a wide range
of processors developed over the past 30 years. Indeed the branch-and-link operation goes
back even further, to the IBM 360.

1.1. Revision History

Revision History

Revision 2.1 10 December 2015 Edward Jones

The Postincrement and Predecrement store instructions defined R, rather than Ry4 as the
operand to which the update was applied.

Postincrement, Predecement instructions now increment or decrement by the amount of the
provided offset (Previously it was a fixed offset of one or two bytes for byte and word operations
respectively).

BGTS, BGTU, JGTS, JGTU, JGTSL, JGTUL. These instructions have been replaced with branches
with a 'Less Than or Equal To' condition. The new instructions are BLES, BLEU, JLES, JLEU,
JLESL, JLEUL.

Revision 2.0 9 October 2015 Jeremy Bennett
Issue 2.0, which covers the entire ISA.
Revision 1.9 8 October 2015 Jeremy Bennett

Final draft before release 2.0. Adds some notation description and a chapter for the
architecture description, which incorporates some of the old intro and the old chapter on NOP
side effects.

Revision 1.8 8 October 2015 Jeremy Bennett
All 32-bit instructions described.

Revision 1.7 8 September 2015 Jeremy Bennett
First batch of 32-bit ALU instruction described. Various typos fixed.

Revision 1.6 8 September 2015 Jeremy Bennett

All 16-bit instructions described. Encoding of JAL corrected in the summary. Ry, used to store
the PC for all BAL and JAL instructions.

Revision 1.5 8 September 2015 Jeremy Bennett

16-bit ALU instruction details complete. Change opcode mnemonics for ALU instructions with
constant arguments. Off-by-one encoding for immediate shift values described.

Revision 1.4 4 September 2015 Jeremy Bennett

Structure of detailed instruction descriptions refined. Most 16-bit ALU instructions now
documented.

Revision 1.3 4 September 2015 Jeremy Bennett
All instruction formats now shown. All summaries in new format.
Revision 1.2 3 September 2015 Jeremy Bennett

First stage of improved formatting, using LibreOffice Impress to as the basis of the instruction
format diagrams for 32-bit instructions (generating SVG and PNG). Clearer summary of
instructions used for 32-bit ALU instructions.

1 Copyright © 2015 Embecosm Limited


http://opencores.org/or1k/Main_Page
http://riscv.org/

ECOSM’

Revision 1.1 18 July 2015 Jeremy Bennett

Start of revision process. Remove load/store double instructions. Use second opcode field of
32-bit load /store as extra constant field. Make all load/store offsets signed. Make BAL use Ry
rather than R, to keep constant field contiguous.

Revision 1.0 14 April 2015 Jeremy Bennett
Bump release number to 1.0 for issue.

Revision 0.9 14 April 2015 Jeremy Bennett
First public release outlining the architecture.

Revision N/A 11 April 2015 Jeremy Bennett

Correct encoding of 32-bit branches (4 more bits of offset). Correct NOP constant meanings.
Matches server/simulator commit b179463.

Revision N/A 8 April 2015 Jeremy Bennett
Full summary of all 16-bit and 32-bit instructions.

Revision N/A 8 April 2015 Jeremy Bennett
Updated preface in preparation for revised architecture.

Revision N/A 6 April 2015 Simon Cook

Initial concept

2 Copyright © 2015 Embecosm Limited



ECOSM’

Chapter 2. Architecture Description

Figure 2.1 shows the overall structure of AAP.

4 - 64 Registers I

Code Memories(words)

RO

R e ——

R4

-------------- AN

>

R63

0x0000 5 -

Data Memories (bytes)
-------------- |  —

OXFFFF

w | e

0x0000 I

Figure 2.1. AAP architecture

2.1. Basic architectural features
These are the key features of the AAP design.

16-bit RISC
architecture

Configurable number
of registers

Harvard memory
layout

The core design sticks to the RISC principles of 3-address register-
to-register operation, a small number of operations and a simple to
implement data path. The fundamental data type is the 16-bit integer.

Although 32/64-bit RISC architectures typically have 16 or more
general purpose registers, small deeply embedded processors often
have far fewer. This represents a significant compiler implementation
challenge. To allow exploration of this area, AAP can be configured
with between 4 and 64 16-bit registers.

The basic architecture provides a 64k byte addressed data memory
and a separate 16M word instruction memory. By requiring more
than 16-bits to address the instruction memory, the compiler writer
can explore the challenge of pointers which are larger than the native
integer type.

Deeply embedded systems often have very small memories,
particularly for data, so the size of memories can be configured.

Copyright © 2015 Embecosm Limited



ECOSM’

24-bit program
counter with 8-bit
status register

16/32-bit
instruction encoding

3-address code

No flags for flow of
control

Little endian

No delay slots

NOP with argument
for simulator control

Many architectures also provide more than two address spaces, often
for special purposes. For example a small EEPROM alongside Flash
memory, or the Special Purpose Register block of OpenRISC. AAP
can support additional address spaces, allowing support for multiple
address spaces throughout the tool chain to be explored.

AAP requires a 24-bit program counter, which is held in a 32-bit
register. The top bits of the program counter then form a status
register. Jump instructions ignore these top 8 bits.

At present only one status bit is defined, a carry flag to allow multiple
precision arithmetic.

A frequent feature of many architectures is to provide a subset of the
most commonly used parts of the Instruction Set Architecture (ISA)
in a short encoding of 16-bits. Less common instructions are then
encoded in 32-bits.

Optimizing to wuse these shorter instructions, is particularly
important for compilers for embedded targets, where memory is at a
premium. AAP provides such a 16-bit subset with a 32-bit encoding
of the full ISA. However it follows the instruction chaining of RISC-V,
so even longer instructions could be created in the future.

The fields within each 16-bit instruction are fixed. A 32-bit
instruction pairs up those fields to increase the number of
instructions.

AAP has stuck rigidly to the RISC principle of 3-address instructions
throughout. Almost all instructions come in two variants, one where
the third argument is a register, and one where the third argument
is a constant.

There are no flag registers indicating the results of operations for use
in conditional jumps. Instead the operation is encoded within the
jump instruction itself.

There is an 8-bit status register as part of the program counter, which
includes a carry flag. However this is not used for flow-of-control, but
to enable multiple precision arithmetic.

The architecture is little-endian—the least significant byte of a word
or double word is at the lowest address.

The behavior for instruction memory is that one word is fetched, since
it may be a 16-bit instruction. If a second word is needed, then its
fields are paired with the first instructions to give larger values for
each field. This is done in little-endian fashion, i.e. the field from the
second instruction forms the most significant bits of the combined
field.

Early RISC designs introduced the concept of a delay slot after
branches. This avoided pipeline delays in branch processing.
Implementations can now avoid such pipeline delay, so like most
modern architectures, AAP does not have delay slots.

This idea is taken from OpenRISC. The NOP opcode includes fields to
specify a register and a constant. These can be used in both hardware
and simulation to trigger side-effects.

Copyright © 2015 Embecosm Limited



ECOSM’

2.2. Event Handling

Events indirect through instructions in the first 256 (0x100) words of instruction memory.
In general these should be 32-bit branch instructions, which means event handlers should
reside in first or last 22! words of instruction memory.

At present the following event vector locations (word addresses) are defined
0x00  Power-on reset.
0x02 Bus error

The event handling mechanism is still in development. In particular no location is yet defined
for the return address to be used by the RTE instruction (see Section 3.7.1).

2.3. NOoP Behavior

The NOP instruction takes an immediate argument which can be used to trigger certain
behavior in a simulator.

. 0 : Breakpoint

1 : Do nothing

. 2 : Exit with return code in Rq

. 3 : Write char in R4 to standard output.
4 : Write char in Ry to standard error.

. All other values: do nothing, but future behavior not guaranteed.

5 Copyright © 2015 Embecosm Limited



ECOSM’

Chapter 3. Instructions
3.1. Notation

In the instruction descriptions below, the following notation is used.

Ry Destination register number "d" in the general registers.

R, First source register number "a" in the general registers.

Ry Second source register number "b" in the general registers.

PC The program counter

I Unsigned immediate value

S Signed immediate value

dmeml/i] Byte offset "i" in the data memory.

imem]i] Word offset "i" in the code memory.

carry The carry flag.

SignExt(x) The value "x" (which may be one of the above) sign extended as necessary.

Individual bits in the encodings are used as follows.
® A zero bit.

1 A one bit.

d, Bit "n" of the destination register field.

a, Bit "n" of the the first source register field.

b, Bit "n" of the the second source register field.

in Bit "'n" of the the unsigned constant field.

sn Bit "n" of the the signed constant field.

3.1.1. Assembler Notation

The assembler generally follows standard GNU assembler conventions. Instructions take the
following form:

[label:] opcode [arguments]

There may be up to 3 arguments, separated by commas. Registers are indicted by R followed
by a number. Constants and constant expressions may be preceded by # for clarity, but this
is not required. C style notation to indicate the base of constants, which defaults to decimal.

3.2. Instruction Format

The 16-bit instruction formats are shown in Figure 3.1 and the 32-bit instruction formats in
Figure 3.2.

6 Copyright © 2015 Embecosm Limited



ECOSM’

Format

1 |0§ccooooddd0a2aabbb

2 | ° ECI.COEO&OZ.O 1.005d2.d1.d05a2.a1.a05 12 L . .10|

3 |0501,C osogolloolszlslsOIaQIallaolb b1|b0|

4 |0 ic Colosogo ood dl,d aga aols S8 |

5 |0§c c, o 0,0 0 d d doll5 14 13 12|11|10

6 |accoooossssssob2bb|

7 Oéclcoooosssssssss
1

L0573, °21,0"8°7,"6{"5,4,"3>2, "1, 0

c.c, Opcode class b,...b, Second source register
0,...0,  Opcode 1.1, Unsigned immediate
d,...d, Destination register s ...s, Unsigned immediate
a,...a, First source register

Figure 3.1. AAP 16-bit instruction formats.

7 Copyright © 2015 Embecosm Limited



ECOSM’

Format  First word (low address) Second word (high address)

$73,720°7,°6, 5 4 5 4 3 5 4

8 |1clcoooodddaaabbb|eccoooodddaaab5b4b|

o) |1§C1,C o, 0,0 0 d d doagla a; 1 1 1 |0 c,C, o 0,0 6Id5ld4d3|elsa4a3l15 14 13

10 |1501.C 030201,0 d2ld1|d0|a2|a1|a0|1 |1 i |0|03 Cz,ls 17 16 1|d5d4d3|a5a4a3|15 14 13

11 |1 ic Colosogo Oo,d2,d ,do,az,al,aol 1 1 |0| 5 2. i, i1, 16|d5d4d3la5a4a3|15 14 i

12 |1.C1.C o, 0,0 0, s S, 8, a aa b b b|0|0302sgsss7s6sss433a5a4la b b b3|

13 |1§C1,C o, 0,0 0 d d doagla a, s S, 8 |0|03|0259sgs7s6d5d4d3a5a4a3|s S, S,

14 1§C1.C ,030201,oo,d2,d .do.ls 14 13 12 11 i |0|cs 02,07060504,d5d4d3,111 0, 19 18 17 16|

15 |1 ic .00.03.02.01.00.d2.d1.d0.15 14 13 12|11|1 |e.CS.C2.115114.113112.d .d d3.111.110, ol i 17|16

16 |1 02,01,00585,34,3 b .b b |0 ic

|1|

15 14 13 12811, IQ 9 s 7.s b b b3|

17 |1EC1,COEO3,02,01,OOES S7 s6 SS,S4 SS 2,S S |a,CS,C S2]| 2Q 19 18817 16 l’qsl4 13 1281]| 1Q

C,...c, Opcode class b_...b, Second source register
0 ...0,  Opcode i..i,  Unsigned immediate
d....d, Destination register s, .--8, Unsigned immediate

a

s---&, First source register
Figure 3.2. AAP 32-bit instruction formats.

Longer instruction formats are possible by setting the top bit of the second word to 1. By
repeating this, instructions of arbitrary length are possible.

3.3. Summary of Instructions

3.3.1. 16-bit Instructions of AAP
. Table 3.1 lists all the 16-bit ALU instructions, which have class 09;

Table 3.2 lists all the 16-bit load/store instructions, which have class 01,

Table 3.3 lists all the 16-bit branch/jump instructions, which have class 10; and

. Table 3.4 lists all the 16-bit miscellaneous instructions, which have class 11.
Opcode Format Encoding Description
NOP Rg,l 5 0000000dddiiiiii |No operation

8 Copyright © 2015 Embecosm Limited



ECOSM’

Opcode Format Encoding Description

ADD Ry,R,,Rp 1 0000001dddaaabbb |Unsigned add

SUB Rg,RaRp 1 0000010dddaaabbb |Unsigned subtract

AND Ry,R.,Rp 1 0000011dddaaabbb |Bitwise AND

OR R4,RasRp 1 0000100dddaaabbb |Bitwise OR

XOR Ry,R.,Rp 1 0000101dddaaabbb |Bitwise exclusive OR

ASR  Rg,R.,Rp 1 0000110dddaaabbb |Arithmetic shift right

LSL Rg,RaRp 1 0000111dddaaabbb |Logical shift left

LSR  Rg,R.,Rp 1 0001000dddaaabbb |Logical shift right

MOV  Rg,Ra 1 0001001dddaaadee |Move register to register

ADDI Ry, R,,#I 2 0001010dddaaaiii |Unsigned add immediate
SUBI Rg,R,,#I 2 0001011dddaaaiii |Unsigned subtract immediate
ASRI Rgy,R,,#I 2 0001100dddaaaiii |Arithmetic shift right immediate
LSLI Ry,R,,#I 2 0001101dddaaaiii |Logical shift left immediate
LSRI Ry,R,,#I 2 0001110dddaaaiii |Logical shift right immediate
MOVI  Rg,#I 5 0001111dddiiiiii |Move immediate to register

Table 3.1. 16-bit ALU instructions

Opcode Format Encoding Description

LDB Ry, (Ra,S) 4 0010000dddaaasss |Indexed load byte

LDW Ry, (Ra,S) 4 0010100dddaaasss |Indexed load word

LDB Ry, (R,+,S) 4 0010001dddaaasss |Indexed load byte with postincrement
LDW Ry, (Ra+,S) 4 0010101dddaaasss |Indexed load word with postincrement
LDB Ry, (-Ra,S) 4 0010010dddaaasss |Indexed load byte with predecrement
LDN Ry, (-Ra,S) 4 e010110dddaaasss |Indexed load word with predecrement
STB  (R4,S),Ra 4 0011000dddaaasss |Indexed store byte

STW (R4q,S),Ra 4 e011100dddaaasss |Indexed store word

STB  (Rgq+,S),R, 4 0011001dddaaasss |Indexed store byte with postincrement
STW (Rg+,S),Ra 4 0011101dddaaasss |Indexed store word with postincrement
STB  (-Rg,S),Ra 4 0011010dddaaasss |Indexed store byte with predecrement
STW (-R4,S),Ra 4 @011110dddaaasss |Indexed store word with predecrement

Table 3.2. 16-bit load/store instructions

Opcode Format Encoding Description

BRA S 7 0100000sssssssss |Relative branch

BAL S,R; 6 0100001ssssssbbb |Relative branch and link

BEQ S,R.,Rp 3 0100010sssaaabbb |Relative branch if equal

BNE S,R,,Rp 3 0100011sssaaabbb |Relative branch if not equal

BLTS S,R.,Rp 3 0100100sssaaabbb |Relative branch if signed less than
9 Copyright © 2015 Embecosm Limited




ECOSM’

Opcode Format Encoding Description

BLES S,R.,R; 3 0100101sssaaabbb Relative branch if signed less than or
equal to

BLTU S,R,,Rp 3 0100110sssaaabbb |Relative branch if unsigned less than

BLEU S,R.,R; 3 0100111sssaaabbb Relative branch if unsigned less than or
equal to

IMP Ry 1 0101000dddeeeeed |Absolute jump

JAL Ry,Rp 1 0101001dddeeebbb |Absolute jump and link

JEQ Ru,RaRp 1 0101010dddaaabbb |Absolute jump if equal

IJNE Rg,RaRp 1 0101011dddaaabbb |Absolute jump if not equal

ILTS Rg,RaRp 1 0101100dddaaabbb |Absolute jump if signed less than

JLES Ry,Rs,Rs 1 0101101dddaaabbb Absolute jump if signed less than or
equal to

JLTU Rg,Ra,Rp 1 0101110dddaaabbb |Absolute jump if unsigned less than

JLEU Ry,R., Ry 1 0101111dddaaabbb Absolute jump if unsigned less than or
equal to

Table 3.3. 16-bit branch/jump instructions

Opcode Format Encoding Description

RTE Ry 1 0110000dddeeeeed |Return from exception

Table 3.4. Miscellaneous 16-bit instructions

3.3.2. 32-bit Instructions of AAP
In the following list, the encoding is shown with the word at the lower address first.

. Table 3.5 lists all the 32-bit ALU instructions, which have class 00xx;

. Table 3.6 lists all the 32-bit load/store instructions, which have class 01xx;

. Table 3.7 lists all the 32-bit branch/jump instructions, which have class 10xx; and

. There are no 32-bit instructions in the miscellaneous class, but if there were, they would
have have class 11xx.

Opcode Format Encoding Description
1000000dddiiiiii )

NOP Rg,I 14 No operation
0000000dddiiiiii
1000001dddaaabbb .

ADD Ry,R,,Rp 8 Unsigned add
000000edddaaabbb
1000010dddaaabbb .

SUB Ry,R.,Rp 8 Unsigned subtract
0000000dddaaabbb
1000011dddaaabbb |

AND R4,R,,Rp 8 Bitwise AND
0000000dddaaabbb
1000100dddaaabbb |

OR RasRasRp 8 Bitwise OR
0000000dddaaabbb

10 Copyright © 2015 Embecosm Limited




ECOSM’

Opcode Format Encoding Description
1000101dddaaabbb | )

XOR Ry,R.,Rp 8 Bitwise exclusive OR
0000000dddaaabbb
1000110dddaaabbb ) ) o

ASR  Rg,R.,Rp 8 Arithmetic shift right
0000000dddaaabbb
1000111dddaaabbb ) )

LSL Ry, Ra,Rp 8 Logical shift left
0000000dddaaabbb
1001000dddaaabbb i .

LSR Ry,R.,Rp 8 Logical shift right
0000000dddaaabbb
1001001dddaaa0ee _ _

MOV  Rg,R, 8 Move register to register
0000000dddaaa00o
1001010dddaaaiii

ADDI R4,R,,I 11 Unsigned add immediate
PPPiiiidddaaaiii
1001011dddaaaiii ) ) )

SUBI Ry,Ry,I 11 Unsigned subtract immediate
P00iiiidddaaaiii
1001100dddaaaiii

ASRI Ry,R,,I 9 Arithmetic shift right immediate
0000000dddaaaiii
1001101dddaaaiii ) ) . .

LSLI Rg,Ra,I 9 Logical shift left immediate
0000000dddaaaiii
1e01110dddaaaiii ) o ) )

LSRI Rg,R,,I 9 Logical shift right immediate
0000000dddaaaiii
1001111dddiiiiii

MOVI Rg,I 15 Move immediate to register
000iiiidddiiiiii
1000001dddaaabbb .

ADDC Rg,R,,Rp 8 Add with carry
0000001dddaaabbb
1000010dddaaabbb .

SUBC Ry,R Ry 8 Subtract with carry
0000001dddaaabbb
1000011dddaaaiii

ANDI R4,R,,I 10 Bitwise AND immediate
P00Piiildddaaaiii
1000100dddaaaiii | = . .

ORI R4, Ra,1 10 Bitwise OR immediate
000iiildddaaaiii
1000101dddaaaiii

XORI Ry,R,,I 10 Bitwise exclusive OR immediate
000iiildddaaaiii

Table 3.5. 32-bit ALU instructions

Opcode Format Encoding Description
1910000dddaaasss

LDB Ry, (Ra,S) 13 Indexed load byte
000ssssdddaaasss

11 Copyright © 2015 Embecosm Limited




ECOSM’

Opcode Format Encoding Description
1010100dddaaasss

LDW Ry, (Ra,S) 13 Indexed load word
000ssssdddaaasss
1010001dddaaasss ) .

LDB Ry, (Ra+,S) 13 Indexed load byte with postincrement
000ssssdddaaasss
1010101dddaaasss . )

LDW Ry, (Ra+,S) 13 Indexed load word with postincrement
000ssssdddaaasss
1910010dddaaasss .

LDB Ry,(-Ra4,S) 13 Indexed load byte with predecrement
000ssssdddaaasss
l010110dddaaasss )

LDW Rg,(-Ra,S) 13 Indexed load word with predecrement
000ssssdddaaasss
1011000dddaaasss

STB  (Rg,S),Ra 13 Indexed store byte
000ssssdddaaasss
1011100dddaaasss

STW (Rg,S),Ra 13 Indexed store word
000ssssdddaaasss
1011001dddaaasss . .

STB  (Rgq+,S),Ra 13 Indexed store byte with postincrement
000ssssdddaaasss
1011101dddaaasss ) .

STW (Rg+,S),R, 13 Indexed store word with postincrement
000ssssdddaaasss
l1011010dddaaasss )

STB  (-R4,S),Ra 13 Indexed store byte with predecrement
000ssssdddaaasss
1011111dddaaasss )

STW (-Rgq,S),R, 13 Indexed store word with predecrement
000ssssdddaaasss

Table 3.6. 32-bit load/store instructions

Opcode Format Encoding Description
1100000sssssssss

BRA S 17 Relative branch
000SSSSSSSSSSSSS
1100001ssssssbbb . .

BAL S,Rp 16 Relative branch and link
P0Ossssssssssbbb
1100010sssaaabbb ) .

BEQ S,R,,Rp 12 Relative branch if equal
@00sssssssaaabbb
1100011sssaaabbb ) .

BNE S,R,,Rp 12 Relative branch if not equal
000sssssssaaabbb
1100100sssaaabbb . L

BLTS S,R,,Rp 12 Relative branch if signed less than
000sssssssaaabbb
1100101sssaaabbb i if si

BLES S,R.,R; 12 Relative branch if signed less than or
000sssssssaaabbb |equal to

12 Copyright © 2015 Embecosm Limited




ECOSM’

Opcode Format Encoding Description
1100110sssaaabbb
BLTU S,R,,Rp 12 000 bbb Relative branch if unsigned less than
sssssssaaa
BLEU S.R..R 12 11e01llsssaaabbb |Relative branch if unsigned less than or
> Tar b @00@sssssssaaabbb |equal to
1101000ddd000000
IMP Ry 8 Absolute jump
0000000ddd000000
1101001dddeeebbb
JAL R4,Rp 8 0000000dddooobbb Absolute jump and link
1101010dddaaabbb
JEQ Ry,Ra,Rp 8 0000000dddaaabbb Absolute jump if equal
1101011dddaaabbb
IJNE Ryg,RaRp 8 0000000dddaaabbb Absolute jump if not equal
1101100dddaaabbb .
JLTS Rg,Ra4,Rp 8 0000000dddaaabbb Absolute jump if signed less than
aaa
JLES Ra.R..R 8 11e1101dddaaabbb |Absclute jump if signed less than or
T 0000000dddaaabbb |equal to
1101110dddaaabbb
JLTU Ry,R.,Rp 8 0000000dddaaabbb Absolute jump if unsigned less than
aaa
JLEU Ra.R..R 3 11e1llldddaaabbb |Apbsolute jump if unsigned less than or
> Tas T 0000000dddaaabbb |equal to
1101000ddd000000
JMPL Ry 8 Absolute jump long
0000001ddd000000
1101001dddeeebbb
JALL Rg,Rp 8 0000001dddooobbb Absolute jump long and link
1101010dddaaabbb
JEQL Rg,Ra,Rp 8 0000001dddaaabbb Absolute jump long if equal
1101011dddaaabbb
IJNEL Ry,R4,Rp 8 0000001dddaaabbb Absolute jump long if not equal
1101100dddaaabbb . o
JLTSL Ry,Ra, Ry 8 0000001dddaaabbb Absolute jump long if signed less than
aaa
JLESL B+.R..R 8 1101101dddaaabbb |Absclute jump long if signed less than
e 0000001dddaaabbb |or equal to
JLTUL Ra.R..R 8 11e1110dddaaabbb |Absclute jump long if unsigned less
> Tas T 0000001dddaaabbb |than
JLEUL Ra.R..R 3 11e11l1ldddaaabbb |Absolute jump long if unsigned less
> Tas T 0000001dddaaabbb |than or equal to

Table 3.7. 32-bit branch/jump instructions

13

Copyright © 2015 Embecosm Limited




ECOSM’

3.4. Detailed Descriptions of 16-bit ALU Instructions

3.4.1. NOP: No Operation
Encoding (format 5):

\a\e e\e @ 0 ©0|dy d; do|is i iz 1o i1 io

Syntax:

NOP Rg,I
Constraints:

d=<7

1<63
Outcome:

PC—PC+1
Notes:

This opcode may trigger side-effects in implementations, depending on the value of I,
particularly when simulating (see Section 2.3).

All implementations should use d = 0, I = 0 as the break instruction for debugging, which
should halt the processor.

All implementations should use d = 0, I = 1 as a true no-operation instruction.

The rationale behind this decision is that in an erroneous program, the most likely value
to be encountered as a random instruction is zero, which will stop the processor.

3.4.2. ADD: Unsigned Add
Encoding (format 1):

‘0‘0 e‘aaaldgdldoagalaobgblbo

Syntax:
ADD R4,R,,Rp
Constraints:
as7
b<7
d=<7
Outcome:
Ri<— R+ Ry
carry«—((Ra+Rb)2216)? 1:0
PC—PC+1

3.4.3. SUB: Unsigned Subtract
Encoding (format 1):

‘0‘0 0‘0010d2d1d0a2a1a0b2b1b0

Syntax:

14 Copyright © 2015 Embecosm Limited



ECOSM’

SUB Rg,Ra5Rp
Constraints:
as7
b<7
d=<7
Outcome:
Ry« Ra-Ryp
carry — (R, >R, )?1:0
PC—PC+1

3.4.4. AND: Bitwise AND
Encoding (format 1):

‘0‘0 a‘eelldgdldoagalaobgblbo

Syntax:

AND Rg4,R,,Ryp
Constraints:

as’7

bs7

d=<7
Outcome:

Rq « Ry & Ry

PC—PC+1

3.4.5. OR: Bitwise OR
Encoding (format 1):

‘a‘e e‘e 1 0 o dy d; dolas a; ap|by by bg

Syntax:

OR R4,R,, Ry
Constraints:

as7

bs7

d<7
Outcome:

Ri—Ra | Rp

PC—PC+1

3.4.6. XOR: Bitwise Exclusive OR
Encoding (format 1):

15 Copyright © 2015 Embecosm Limited



ECOSM’

‘e‘e e‘e 1 o 1‘d2d1 dolas a; ag|by by bo

Syntax:

XOR Ry, R4, Rp
Constraints:

as7

b=s7

d=<7
Outcome:

Ry« Ra "Ry

PC—PC+1

3.4.7. ASR: Arithmetic Shift Right
Encoding (format 1):

‘0‘0 e‘elledgdldoagalaobgblbo

Syntax:
ASR R4,R,, Ry
Constraints:
as<7
b<7
d=<7
Outcome:
Rqg— (Rqa | (carry << 16)) >> Ry )
carry < O
PC—PC+1
Notes:
If Ry 2 17 the result in Ry will be zero.

The carry flag is always cleared, even if a shift of zero is specified.

3.4.8. LSL: Logical Shift Left
Encoding (format 1):

‘9‘0 0‘0111d2d1d0a2a1a0b2b1b0

Syntax:

LSL R4,R.,Rp
Constraints:

as7

b7

16 Copyright © 2015 Embecosm Limited



ECOSM’

d=<7
Outcome:

Rq <~ Ra << Rp

PC—PC+1
Notes:

If R, = 16 the result in Ry will be zero.

3.4.9. LSR: Logical Shift Right
Encoding (format 1):

‘0‘0 0‘1000d2d1d0a2a1a0b2b1b0

Syntax:

LSR R4,R,, Ry
Constraints:

as7

bs7

d=<7
Outcome:

R4 —Ra>>Rp

PC—PC+1
Notes:

If Ry =2 16 the result in Ry will be zero.

3.4.10. MOV: Move Register to Register
Encoding (format 1):

‘e‘e 9‘1 @ @ 1|d, d; dolas a; ag|@ @ @

Syntax:

MOV Ry, R,
Constraints:

as7

d=<7
Outcome:

Rq <« Ry

PC—PC+1

3.4.11. ADDI: Unsigned Add Immediate
Encoding (format 2):

‘e‘e 9‘1 @ 1 ©0|d, d; dolas a; aglin i1 io

17 Copyright © 2015 Embecosm Limited



ECOSM’

Syntax:

ADDI Ry,R,,I
Constraints:

as’7

d<7

I<7
Outcome:

Rg—Ry+1

carry — ((Ra+1)=2'%)21:0

PC—PC+1
Notes:

Adding constant zero can be used to clear the carry flag.

3.4.12. SUBI: Unsigned Subtract Immediate
Encoding (format 2):

‘0‘0 0‘1011d2d1d0a2a1a0i2 i; ip

Syntax:
SUBI Ry,R,,I
Constraints:
a7
d=<7
I<7
Outcome:
Rg—Ry-1
carry — (I>R,;)?1:0
PC—PC+1

3.4.13. ASRI: Arithmetic Shift Right Immediate
Encoding (format 2):

‘0‘0 0‘1100d2d1d0a2a1a0i2 i; ip

Syntax:
ASRI Ry,R,,I
Constraints:
as7
d<7
1=<I<8

Outcome:

18 Copyright © 2015 Embecosm Limited



ECOSM’

Rqg < (Rq | (carry << 16)) >>1T)
carry <« O
PC—PC+1

Notes:

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as 000,.
The rationale is that shifting by zero is pointless. It is not needed to clear the carry flag,
since there are other ways of clearing the it (for example adding constant zero).

3.4.14. LSLI: Logical Shift Left Immediate
Encoding (format 2):

‘a‘e 9‘1 1 0 1|dy d; dolay a; aplis i; io

Syntax:

LSLI R4,R,,I
Constraints:

as7

d=<7

1<I<8
Outcome:

Rq «— Ry <<1

PC—PC+1
Notes:

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as 000,.
The rationale is that shifting by zero is pointless. It is not needed to clear the carry flag,
since there are other ways of clearing the it (for example adding constant zero).

3.4.15. LSRI: Logical Shift Right Immediate
Encoding (format 2):

\a\a 0\1 1 1 o]|dy d; dolag a; aplip i1 io

Syntax:

LSRI Rg4,R,,I
Constraints:

as7

d=<7

1=<I<8
Outcome:

Rq Ry >>1

PC—PC+1
Notes:

19 Copyright © 2015 Embecosm Limited



ECOSM’

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as 000,.
The rationale is that shifting by zero is pointless. It is not needed to clear the carry flag,
since there are other ways of clearing the it (for example adding constant zero).

3.4.16. MOVI: Move Immediate to Register
Encoding (format 5):

‘a‘a 9‘1 1 1 1]dy d; dolis i i3 ip i1 io

Syntax:

MOVI Rg,I
Constraints:

d=<7

1<63
Outcome:

Ry 1

PC—PC+1

3.5. Detailed Descriptions of 16-bit Load/Store Instructions

3.5.1. LDB: Indexed Load Byte
Encoding (format 4):

‘0‘0 1‘00Oedgdldoagalao‘SQSlso‘

Syntax:
LDB Ry, (Ra,S)
Constraints:
d=<7
-4<5=<3
Outcome:
R4 « dmem|[R, + SignExt(S)]
PC—PC+1
Notes:

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.2. LDW: Indexed Load Word
Encoding (format 4):

‘0‘0 1‘0100d2d1d0a2a1a0523130

Syntax:
LDW Rg, (Ra,S)

Constraints:

20 Copyright © 2015 Embecosm Limited



ECOSM’

d<7
-4<S<3
Outcome:
R4 <« dmem [R, + SignExt(S)] | (dmem[R, + SignExt(S) + 1] << §)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.3. LDB: Indexed Load Byte with Postincrement
Encoding (format 4):

‘0‘0 1‘0001d2d1d0a2a1a0823180

Syntax:
LDB Ry, (Ra+,S)
Constraints:
d=<7
-4<5=<3
Outcome:
R4 < dmem|R, + SignExt(S)]
R, «+ R, + SignExt(S)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.4. LDW: Indexed Load Word with Postincrement
Encoding (format 4):

‘e‘e 1‘0 1 0 1|dy d; dolas a; ap|ss s; so

Syntax:
LDW Ry, (Ra+,S)
Constraints:
d=<7
-4<S<3
Outcome:
Ryq « dmem|R, + SignExt(S)] | (dmem[R, + SignExt(S) + 1] << 8§)
R, <+ R, + SignExt(S)
PC—PC+1

Notes:

21 Copyright © 2015 Embecosm Limited



ECOSM’

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.5. LDB: Indexed Load Byte with Predecrement
Encoding (format 4):

‘0‘0 1‘0010d2d1d0a2a1a0s231s0

Syntax:
LDB Ry, (-Ra4,S)
Constraints:
d<7
-4<S<3
Outcome:
R, < R, - SignExt(S)
Ry « dmem|R,]
PC—PC+1
Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.6. LDW: Indexed Load Word with Predecrement
Encoding (format 4):

‘0‘0 1‘0110d2d1d0a2a1a0523150

Syntax:
LDW Ry, (-Ra,S)
Constraints:
d<7
-4<S<3
Outcome:
R, <+ R, - SignExt(S)
Ry « dmem|R,] | (dmem|[R, + 1] << §)
PC—PC+1
Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

22 Copyright © 2015 Embecosm Limited



ECOSM’

3.5.7. STB: Indexed Store Byte
Encoding (format 4):

‘0‘0 1‘1006d2d1d0a2a1a0323130

Syntax:
STB (Rg,S),R,
Constraints:
d=<7
-4<S5<3
Outcome:
dmem|[Ry + SignExt(S)] « (R & 255)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.8. STW: Indexed Store Word
Encoding (format 4):

‘0‘0 1‘1106d2d1d0a2a1a0323130

Syntax:
STW (Rg,S),R,
Constraints:
d<7
-4<5=<3
Outcome:
dmem|[Ry + SignExt(S)] « (R & 255)
dmem|[Ry + SignExt(S) + 1] « (R, >> §)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.9. STB: Indexed Store Byte with Postincrement
Encoding (format 4):

‘0‘0 1‘1001d2d1d0a2a1a0s231s0

Syntax:
STB (Rg+,S),R,

Constraints:

23 Copyright © 2015 Embecosm Limited



ECOSM’

d<7
-4<5=<3
Outcome:
dmem|[Rq + SignExt(S)] « (R, & 255)
R4 <« Rq + SignExt(S)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.10. STW: Indexed Store Word with Postincrement
Encoding (format 4):

‘0‘0 1‘1101d2d1d0a2a1a0s251s0

Syntax:
STW (Rg+,S),R,
Constraints:
d=<7
-4<S<3
Outcome:
dmem|[Ry + SignExt(S)] « (Ry & 255)
dmem|Ry + SignExt(S) + 1] <« (Ra >> §)
Ryq « Rq + SignExt(S)
PC—PC+1
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.11. STB: Indexed Store Byte with Predecrement
Encoding (format 4):

‘0‘9 1‘1010d2d1d0a2a1a0523130

Syntax:

STB (-R4,S),R,
Constraints:

d=<7

-4<5=<3
Outcome:

Ry « R4 - SignExt(S)

24 Copyright © 2015 Embecosm Limited



ECOSM’

dmem|[Ry] « (Ra & 255)
PC—PC+1
Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.5.12. STW: Indexed Store Word with Predecrement
Encoding (format 4):

‘0‘0 1‘1110d2d1d0a2a1a0523130

Syntax:
STW (-R4,S),R,
Constraints:
d=<7
-4<S<3
Outcome:
Rgq « Rq - SignExt(S)
dmem|[Ry] « (R, & 255)
dmem[Rg4 + 1] « (R, >> 8§)
PC—PC+1
Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.6. Detailed Descriptions of 16-bit Branch/Jump Instructions

. Note

\/‘ The only branch/jump comparisons provided are for "equal", "not equal’, "less
than" and "greater than". Branch/jump comparisons for "less than or equal" and
"greater than or equal" can be provided by using "greater than" and "less than"
respectively in the opposite direction.”

Purists will point out that this reduces the opportunity for branch prediction and
pipeline preservation. However the limited instruction space means not all opcodes
can be provided.

3.6.1. BRA: Relative Branch
Encoding (format 7):

‘0‘1 0‘0000S8S7S6S5S433323180

Syntax:

25 Copyright © 2015 Embecosm Limited



ECOSM’

BRA S
Constraints:

-256 < S <255
Outcome:

PC «— PC + SignExt(S)
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.2. BAL: Relative Branch and Link
Encoding (format 6):

‘0‘1 0‘0001358483828130b2b1b0

Syntax:

BAL S,Ry
Constraints:

bs7

-32<S5<31
Outcome:

R, —PC+1

PC « PC + SignExt(S)
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.3. BEQ: Relative Branch if Equal
Encoding (format 3):

‘0‘1 0‘0010s231s0a2a1a0b2b1b0

Syntax:

BEQ S,R,, Ry
Constraints:

as<7

b<7

-4<5<3
Outcome:

PC « (R, = Ry) ? PC + SignExt(S) : PC + 1

26 Copyright © 2015 Embecosm Limited



ECOSM’

Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.4. BNE: Relative Branch if Not Equal
Encoding (format 3):

‘0‘1 e‘e @ 1 1|sy, s; So|lap a; ap|by by b

Syntax:
BNE S,R,,Rp
Constraints:
as7
b<7
-4<S<3
Outcome:
PC « (Ry # Rp) ? PC + SignExt(S) : PC + 1
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.5. BLTS: Relative Branch if Signed Less Than
Encoding (format 3):

‘0‘1 0‘0100828180a23_1a0b2b1b0

Syntax:
BLTS S,R.,Rp
Constraints:
as7
b<7
-4<5=<3
Outcome:
PC «— (R, < Ry) ? PC + SignExt(S) : PC + 1
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

27 Copyright © 2015 Embecosm Limited



ECOSM’

3.6.6. BLES: Relative Branch if Signed Less Than or Equal To
Encoding (format 3):

‘0‘1 0‘01018231s0a2a1a0b2b1b0

Syntax:
BLES S,R,,Ry
Constraints:
as<7
bs7
-4<8<3
Outcome:
PC « (R £ Ryp) ? PC + SignExt(S) : PC + 1
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.7. BLTU: Relative Branch if Unsigned Less Than
Encoding (format 3):

‘0‘1 0‘01108281S0agala0b2b1b0

Syntax:
BLTU S,R.,Rp
Constraints:
a7
b<7
-4<S<3
Outcome:
PC «— (Ry < Rp) ? PC + SignExt(S) : PC + 1
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.8. BLEU: Relative Branch if Unsigned Less Than or Equal To
Encoding (format 3):

‘0‘1 0‘0111s231s0a2a1a0b2b1b0

28 Copyright © 2015 Embecosm Limited



ECOSM’

Syntax:
BLEU S,R.,R;
Constraints:
as’7
b<7
-4<S<3
Outcome:
PC «— (Ry = Rp) ? PC + SignExt(S) : PC + 1
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.6.9. JMP: Absolute Jump
Encoding (format 1):

‘e‘1a‘1eead2d1doeeaeea

Syntax:

JMP Ry
Constraints:

d=<7
Outcome:

PC «— R4
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jumping to a non-existent location will trigger a bus error exception.

3.6.10. JAL: Absolute Jump and Link
Encoding (format 1):

‘0‘1 9‘1 @ 0 1|dy, d; do|® © @ |by by b

Syntax:
JAL R4, Ry
Constraints:
b=s7
d=<7

Outcome:

29 Copyright © 2015 Embecosm Limited



ECOSM’

Ry~ PC+1
PC — Ry
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jumping to a non-existent location will trigger a bus error exception.

3.6.11. JEQ: Absolute Jump if Equal
Encoding (format 1):

‘0‘1 0‘1010d2d1d0a2a1a0b2b1b0

Syntax:
JEQ R4>RasRp
Constraints:
a7
b<7
d=<7
Outcome:
PC—(Ry=Rp)?Rq:PC+1
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.6.12. INE: Absolute Jump if Not Equal
Encoding (format 1):

‘0‘1 0‘1010d2d1d0a2a1a0b2b1b0

Syntax:
INE R4q,R4,Ryp
Constraints:
as’7
b<7
d=<7
Outcome:
PC— (Ry#Rp) PRy :PC+ 1
Notes:

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

30 Copyright © 2015 Embecosm Limited



ECOSM’

3.6.13. JLTS: Absolute Jump if Signed Less Than
Encoding (format 1):

‘0‘1 6‘1100d2d1d0a2a1a0b2b1b0

Syntax:
ILTS R4,Ra,Rp
Constraints:
as<7
b<7
d=<7
Outcome:
PC—(Ry<Rp)?Rq:PC+1
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.6.14. JLES: Absolute Jump if Signed Less Than or Equal To
Encoding (format 1):

‘0‘1 0‘1101d2d1d0a2a1a0b2b1b0

Syntax:

JLES Rg,Ra,Rp
Constraints:

as<7

b=s7

d=<7
Outcome:

PC— (Ry<Rp) ?Rq:PC+1
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.6.15. JLTU: Absolute Jump if Unsigned Less Than
Encoding (format 1):

31 Copyright © 2015 Embecosm Limited



ECOSM’

‘0‘1 9‘1 1 1 e‘dgdl dolas a; ag|by by bo

Syntax:
JLTU Rg,Ra, Ry
Constraints:
a7
b<s7
d=<7
Outcome:
PC— (Ry<Rp)?Rq:PC+1
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.6.16. JLEU: Absolute Jump if Unsigned Less Than or Equal To
Encoding (format 1):

‘0‘1 6‘1111d2d1d0a2a1a0b2b1b0

Syntax:
JLEU Rg,R,, Ry
Constraints:
as7
b<7
d=<7
Outcome:
PC— (RysRp)?Ry:PC+1
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.7. Detailed Descriptions of 16-bit Miscellaneous Instructions

3.7.1. RTE: Return from Exception
Encoding (format 1):

‘e‘11‘eeeed2d1doeeeeee

Syntax:

32 Copyright © 2015 Embecosm Limited



®

ECOSM

RTE Ry
Constraints:

d=<7
Outcome:

PC —< R4
Notes:

This opcode is not fully defined, pending agreement on the exception mechanism for AAP.

3.8. Detailed Descriptions of 32-bit ALU Instructions

At this time, this section is incomplete.

3.8.1. NOP: No Operation
Encoding (format 14, first word at lower address):

‘1‘9 a‘e o o Q‘dgdl do‘is iy i3 ip iy io‘

‘a‘e e‘e o o 0‘d5d4d3‘111i10 i ig iy 16‘

Syntax:

NOP Rg,I
Constraints:

d <63

I <4095
Outcome:

PC—PC+1
Notes:

This opcode may trigger side-effects in implementations, depending on the value of I,
particularly when simulating (see Section 2.3).

There are no conventions for any values of d or I for the 32-bit version of NOP.

3.8.2. ADD: Unsigned Add
Encoding (format 8, first word at lower address):

‘1‘0 0‘0 0 © 1‘d2 d; do‘ag aj ao‘bg b bo‘

‘0‘0 0‘0 0 © 0‘(:15 d4 d3‘a5 aq ag‘b5 b4 bg‘

Syntax:

ADD R4,R,,Rp
Constraints:

a<63

b <63

d=<63

33 Copyright © 2015 Embecosm Limited



ECOSM’

Outcome:
Ry « Ry + Ry,
carry — ((Ra+Rp) 22'°)21:0
PC —~PC+2

3.8.3. SUB: Unsigned Subtract

Encoding (format 8, first word at lower address):

‘1‘0 0‘0 (2] 1 a‘dg d1 do‘ag ap ao‘bg b1 bo‘

‘a‘e e‘e e o 0‘d5d4d3‘a5 a4 ag‘b5b4b3‘
Syntax:

SUB Rg,Ra5Rp
Constraints:
a<63
b <63
d=<63
Outcome:
Ry <~ Ra-Ryp
carry — (Rp >R, )?21:0
PC —PC+2

3.8.4. AND: Bitwise AND

Encoding (format 8, first word at lower address):

‘1‘0 0‘0 0 1 l‘dg d; do‘ag ai ao‘bg b bo‘

‘0‘0 0‘0 0 © 0‘d5 d4 d3‘a5 aq ag‘b5 b4 b3‘
Syntax:

AND Rg4,R,, Ry
Constraints:

a<63

b <63

d <63
Outcome:

R4« Ry & Ry

PC —PC+2

3.8.5. OR: Bitwise OR

Encoding (format 8, first word at lower address):

‘1‘0 a‘aleadgdldoagalaobgblbo

34 Copyright © 2015 Embecosm Limited



ECOSM’

‘e ‘e 0 ‘e e 0 o ‘ds ds dz|as as as|bs by by

Syntax:

OR R4,R,, Ry
Constraints:

a< 63

b <63

d=<63
Outcome:

Rqi—Ra | Rp

PC «— PC + 2

3.8.6. XOR: Bitwise Exclusive OR
Encoding (format 8, first word at lower address):

‘ 1‘ 0 e‘ e 1 0 1 ‘dg d; do‘ag a; ao‘bg b, bo‘

‘a ‘e 0 ‘e e 0 o ‘d5 da dg‘as a4 ag‘bs ba bg‘

Syntax:

XOR Rg4,Ra,, Ry
Constraints:

a<63

b <63

d=<63
Outcome:

Ry« Ry "Ry

PC — PC + 2

3.8.7. ASR: Arithmetic Shift Right
Encoding (format 8, first word at lower address):

‘1‘0 0‘0 1 1 e‘dg d] do‘ag ap ao‘bg b1 bo‘

‘0‘0 0‘0 0 © 0‘(:15 d4 d3‘&5 aq a3‘b5 b4 bg‘

Syntax:

ASR Rg,R45Rp
Constraints:

a<63

b <63

d=<63

Outcome:

35

Copyright © 2015 Embecosm Limited



ECOSM’

Rqg— (Rqa | (carry << 16)) >> Ry )
carry < O
PC — PC + 2
Notes:
If R, = 17 the result in Ry will be zero.

The carry flag is always cleared, even if a shift of zero is specified.

3.8.8. LSL: Logical Shift Left
Encoding (format 8, first word at lower address):

‘1‘9 9‘9 1 1 l‘dg d; do‘ag ai ao‘bg b bo‘

‘0‘0 0‘0 0 © 0‘d5 d4 d3‘a5 aq ag‘b5 b4 b3‘

Syntax:

LSL Ry4,Ra.,Rp
Constraints:

a<63

b <63

d<63
Outcome:

Rq — Ra << Rp

PC — PC + 2
Notes:

If R, = 16 the result in Ry will be zero.

3.8.9. LSR: Logical Shift Right
Encoding (format 8, first word at lower address):

‘1‘0 0‘1 e o e‘dg d; do‘ag a; ao‘bgbl bo‘

‘e‘e e‘e o o 0‘d5d4d3‘a5 a4 ag‘b5b4b3‘

Syntax:

LSR R4,Ra,Rp
Constraints:

a<63

b <63

d=<63
Outcome:

Rq <~ Ra >>Rp

PC—PC+2

36 Copyright © 2015 Embecosm Limited



ECOSM’

Notes:

If R, 2 16 the result in Ry will be zero.

3.8.10. MOV: Move Register to Register
Encoding (format 8, first word at lower address):

‘1‘9 9‘1 o o 1‘d2d1 do‘ag a; ao‘e 0 e‘

‘e‘e e‘e o o 0‘d5d4d3‘a5 au ag‘e 0 e‘

Syntax:
MOV Ry,R,
Constraints:
a<63
d<63
Outcome:
Rg < Ra
PC —PC+2

3.8.11. ADDI: Unsigned Add Immediate
Encoding (format 11, first word at lower address):

‘1‘0 0‘1 o 1 e‘dgdldo‘agalao‘ig i1 io‘

‘0‘0 O‘ig ig i7 i6‘d5 d4 dg‘a5 aq a3‘i5 i4 ig‘

Syntax:

ADDI Ry,R,,I
Constraints:

a<63

d <63

1<63
Outcome:

Ry Ry+1

carry<—((Ra+I)2216)?1 :0

PC —PC+2
Notes:

Adding constant zero can be used to clear the carry flag.

3.8.12. SUBI: Unsigned Subtract Immediate
Encoding (format 11, first word at lower address):

‘1‘0 0‘1 o 1 1‘d2 d; do‘ag a; ao‘iz i io‘

‘0‘9 O‘ig ig iy i6‘d5 dg dg‘as as ag‘is iq ig‘

37 Copyright © 2015 Embecosm Limited



ECOSM’

Syntax:
SUBI Ry,R,,I
Constraints:
a<63
d<63
I1<63
Outcome:
Rg—Ry-1
carry — (I>R,)?1:0
PC —PC+2

3.8.13. ASRI: Arithmetic Shift Right Immediate
Encoding (format 9, first word at lower address):

‘1‘0 0‘1 1 © Q‘dgdldo‘agal ao‘iz i iO‘

‘e‘e e‘e o o 0‘d5d4d3‘a5 a4 as‘is iy is‘

Syntax:
ASRI Ry,R,,I
Constraints:
a<63
d=<63
1<I=<64
Outcome:
Ry« (Ra | (carry << 16)) >>1)
carry < O
PC —PC+2
Notes:
If I = 17 the result in Ry will be zero.

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as
000000,. The rationale is that shifting by zero is pointless. It is not needed to clear the
carry flag, since there are other ways of clearing the it (for example adding constant zero).

3.8.14. LSLI: Logical Shift Left Immediate
Encoding (format 9, first word at lower address):

‘1‘0 0‘1 1 © 1‘d2d1d0‘a2a1ao‘i2 i iO‘

‘e‘e e‘e o o 0‘d5d4d3‘a5 a4 as‘is iy is‘

Syntax:
LSLT Rg,Ra,I

38 Copyright © 2015 Embecosm Limited



®

ECOSM

Constraints:
as<63
d <63
1<I=<64
Outcome:
Rq <« Ry <<1
PC —PC+2
Notes:
If I = 16 the result in Ry will be zero.

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as
000000,. The rationale is that shifting by zero is pointless. It is not needed to clear the
carry flag, since there are other ways of clearing the it (for example adding constant zero).

3.8.15. LSRI: Logical Shift Right Immediate
Encoding (format 9, first word at lower address):

‘1‘0 0‘1 1 1 e‘dg d; do‘ag a; ao‘iz i io‘

‘e‘e e‘e o o 0‘d5d4d3‘a5 a4 as‘is iy is‘

Syntax:

LSRI Rg4,R,,I
Constraints:

a<63

d=<63

1<I<64
Outcome:

Ry — Ry >>1

PC —PC+2
Notes:

If I 2 16 the result in Ry will be zero.

The shift is encoded with a value 1 less than specified (i.e. a shift of 1 is encoded as
000000,. The rationale is that shifting by zero is pointless. It is not needed to clear the
carry flag, since there are other ways of clearing the it (for example adding constant zero).

3.8.16. MOVI: Move Immediate to Register
Encoding (format 15, first word at lower address):

‘1‘9 0‘1 1 1 1‘d2d1 do‘is ig i3 iy 1y io‘

‘0‘9 e‘ils i14 113 i12‘d5 dg ds‘iu ijp 19 ig iz i6‘

Syntax:
MOVI Rg,I

39 Copyright © 2015 Embecosm Limited



ECOSM’

Constraints:
d <63
I < 65535
Outcome:
Rq«1
PC—PC+2

3.8.17. ADDC: Unsigned Add with Carry
Encoding (format 8, first word at lower address):

‘1‘0 e‘e e o 1‘d2 d; do‘ag a, ao‘bgbl bo‘

‘e‘e e‘e o o 1‘d5d4d3‘a5 as ag‘b5b4b3‘

Syntax:
ADDC Ry,R.,Rp
Constraints:
a<63
b <63
d=<63
Outcome:
Rq < Ry + Ry + carry
carry<—((Ra+Rb+carry)2216)? 1:0
PC — PC + 2

3.8.18. SUBC: Unsigned Subtract with Carry
Encoding (format 8, first word at lower address):

‘1‘0 0‘0 0 1 e‘dg d1 do‘ag ap ao‘bg b1 bo‘

‘e‘e e‘e e o 1‘d5d4d3‘a5 a4 ag‘b5b4b3‘

Syntax:
SUBC Ry,R.,Rp
Constraints:
a<63
b <63
d <63
Outcome:
Rq < R,y - Ry - carry
carry < ((Rp + carry) > R,) 2 1:0
PC —PC+2

40 Copyright © 2015 Embecosm Limited



ECOSM’

3.8.19. ANDI: Bitwise AND Immediate

Encoding (format 10, first word at lower address):

‘1‘0 0‘0 o 1 1‘d2d1d0‘a2a1 ao‘iQ i iO‘

‘0‘0 e‘ig i7 i6‘1‘d5d4d3‘a5a4a3‘i5 ig i3‘

Syntax:

ANDI R4,R,,I
Constraints:

a<63

d<63

I<511
Outcome:

Ry — Ry &1

PC «— PC + 2

3.8.20. ORI: Bitwise OR immediate
Encoding (format 10, first word at lower address):

‘1‘0 9‘0 1 © e‘dgdldo‘agal ao‘ig i1 io‘

‘0‘0 e‘ig i7 i6‘1‘d5d4d3‘a5a4a3‘i5 ig ig‘

Syntax:
ORI Ry,R,,I
Constraints:
a<63
d <63
I<511
Outcome:
Ri«— Ry |1
PC — PC + 2

3.8.21. XORI: Bitwise Exclusive OR Immediate
Encoding (format 10, first word at lower address):

‘1‘0 0‘0 1 © 1‘d2d1d0‘a2a1ao‘i2 i iO‘

‘0‘0 e‘ig i7 i6‘1‘d5d4d3‘a5a4ag‘i5 iq i3‘

Syntax:
XORI Rg,R,,I

Constraints:

41 Copyright © 2015 Embecosm Limited



®

ECOSM

a<63

d <63

I<511
Outcome:

Rg«— Ry M1

PC — PC + 2

3.9. Detailed Descriptions of 32-bit Load/Store Instructions

3.9.1. LDB: Indexed Load Byte
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 0 © e‘dg d; do‘ag ai aQ‘SQ S So‘

‘9‘9 O‘Sg Sg S7 S6‘d5 dg dg‘as ag ag‘SS S4 Sg‘

Syntax:
LDB Ry, (Ra,S)
Constraints:
d=<63
-512<S <511
Outcome:
R4 <« dmem[R, + SignExt(S)]
PC —PC+2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.2. LDW: Indexed Load Word
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 1 o Q‘dg d; do‘ag ai ao‘SQ S So‘

‘9‘0 Q‘Sg Sg S7 S6‘d5 dg dg‘as as a3‘35 S4 Sg‘

Syntax:
LDW Rg, (Ra,S)
Constraints:
d=<63
-512<S <511
Outcome:
Ryq « dmem [R, + SignExt(S)] | (dmem|[R, + SignExt(S) + 1] << 8)
PC—PC+2

42 Copyright © 2015 Embecosm Limited



ECOSM’

Notes:

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.3. LDB: Indexed Load Byte with Postincrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 0 © 1‘d2 d; do‘ag a; aQ‘SQ S So‘

‘0‘0 Q‘Sg Sg S7 Sﬁ‘dS d4 d3‘a5 aq ag‘S5 S4 83‘

Syntax:
LDB Ry, (Ra+,S)
Constraints:
d <63
-512<S <511
Outcome:
Ryq « dmem|R, + SignExt(S)]
R, «+ R, + SignExt(S)
PC — PC + 2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.4. LDW: Indexed Load Word with Postincrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 1 o 1‘d2 d; do‘ag ai aO‘SQ S So‘

‘0‘0 0‘89 Sg S7 S6‘d5 d4 d3‘&5 aq ag‘SS S4q Sg‘

Syntax:
LDW Ry, (Ra+,S)
Constraints:
d <63
-512<S <511
Outcome:
R4 « dmem [R, + SignExt(S)] | (dmem[R, + SignExt(S) + 1] << §)
R, < R, + SignExt(S)
PC — PC + 2
Notes:

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

43 Copyright © 2015 Embecosm Limited



ECOSM’

3.9.5. LDB: Indexed Load Byte with Predecrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 0 1 e‘dg dl do‘az a; ao‘SQ S1 So‘

‘0‘0 Q‘Sg Sg S7 S6‘d5 d4 dg‘a5 aq a3‘85 S4 83‘

Syntax:

LDB Ry, (-Ra,S)
Constraints:

d <63

-512<S <511
Outcome:

R, «+ R, - SignExt(S)

Ry « dmem|[R,]

PC —PC+2
Notes:

This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.6. LDW: Indexed Load Word with Predecrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘0 1 1 e‘dg d; do‘ag a; aQ‘SQ S So‘

‘0‘0 9‘89 Sg S7 86‘d5 d4 d3‘a5 aq a3‘85 S4 83‘

Syntax:
LDW Ry, (-Ra,S)
Constraints:
d<63
-512<S <511
Outcome:
R, < R, - SignExt(S)
Ry « dmem [Ry] | (dmem[R, + 1] << §)
PC — PC + 2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.7. STB: Indexed Store Byte
Encoding (format 13, first word at lower address):

‘1‘0 1‘1000d2d1d0a2a1a0s231s0

44 Copyright © 2015 Embecosm Limited



ECOSM’

‘0‘0 O‘Sg Sg S7 S6‘d5 dq dsz|as a4 ag|ss sz S3

Syntax:
STB (Rg4,S),R,
Constraints:
d=<63
-512<S <511
Outcome:
dmem|[Ry + SignExt(S)] < (R4 & 255)
PC «— PC + 2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.8. STW: Indexed Store Word
Encoding (format 13, first word at lower address):

‘0‘0 1‘1 1 o e‘dg d; do‘ag a; aQ‘SQ S So‘

‘0‘0 0‘59 sg S7 SG‘ds dg dg‘as aq ag‘Ss S4 33‘

Syntax:
STW (Rg4,S),R,
Constraints:
d=<63
-512<S <511
Outcome:
dmem|[Ry + SignExt(S)] « (Ry & 255)
dmem|Ry + SignExt(S) + 1] < (Ra >> §)
PC — PC + 2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.9. STB: Indexed Store Byte with Postincrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘1 0 © 1‘d2 d; do‘ag ai aQ‘SQ S So‘

‘9‘0 0‘59 Sg S7 SG‘dS dg dg‘as as a3‘55 S4 Sg‘

Syntax:
STB (Rg+,S),R,

Constraints:

45 Copyright © 2015 Embecosm Limited



ECOSM’

d <63
-512<S <511
Outcome:
dmem|[Rq + SignExt(S)] « (R, & 255)
Ryq « Rq + SignExt(S)
PC —PC+2
Notes:
This opcode accesses data memory, and the computed address is therefore a byte

address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.10. STW: Indexed Store Word with Postincrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘1 1 o 1‘d2 d; do‘aQ a ao‘SQ S1 So‘

‘0‘0 0‘89 Sg S7 S6‘d5 d4 d3‘&5 aq ag‘SS S4q 83‘

Syntax:
STW (Rg+,S),R,
Constraints:
d <63
-512<S <511
Outcome:
dmem|[Rq + SignExt(S)] « (R, & 255)
dmem[Ry + SignExt(S) + 1] «— (Ry >> §)
Ryq « Rq + SignExt(S)
PC —PC+2
Notes:

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.11. STB: Indexed Store Byte with Predecrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘1 0 1 e‘dg d; do‘ag a; ao‘sQ s so‘

‘0‘9 O‘Sg Sg S7 S6‘d5 dg dg‘as ag ag‘SS S4 Sg‘

Syntax:

STB (-R4,S),R,
Constraints:

d=<63

-512<S <511

46 Copyright © 2015 Embecosm Limited



ECOSM’

Outcome:
Ry « R4 - SignExt(S)
dmem[Ry] « (R, & 255)
PC —PC+2

Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.9.12. STW: Indexed Store Word with Predecrement
Encoding (format 13, first word at lower address):

‘1‘0 1‘1 1 1 e‘dg d; do‘ag a; aQ‘SQ S So‘

‘9‘9 O‘Sg Sg S7 S6‘d5 dg dg‘as ag ag‘SS S4 Sg‘

Syntax:
STW (-R4,S),R,
Constraints:
d=<63
-512<S <511
Outcome:
Ryq « Rq - SignExt(S)
dmem|[Ry] « (R, & 255)
dmem|[Ryq + 1] < (Ry >> §)
PC «— PC + 2
Notes:

For the avoidance of doubt, the decrement of R, is carried out before R, is used to
compute the address for loading.

This opcode accesses data memory, and the computed address is therefore a byte
address. Accessing a non-existent memory location will trigger a bus error exception.

3.10. Detailed Descriptions of 32-bit Branch/Jump Instructions

" Note
\/ As with the 16-bit instructions, only a limited range of comparisons is provided.
¢ See Section 3.6 for an explanation.

3.10.1. BRA: Relative Branch
Encoding (format 17, first word at lower address):

‘1‘1 0‘0 O O 0O |sSg S7 Sg S5 S4 S3 Sy S3 so‘

‘ 0 ‘ 0o o ‘821 S20 S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 ‘

47 Copyright © 2015 Embecosm Limited



ECOSM’

Syntax:

BRA S
Constraints:

-2,097,152 < S 2,097,151
Outcome:

PC «— PC + SignExt(S)
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.2. BAL: Relative Branch and Link
Encoding (format 16, first word at lower address):

‘1‘1 0‘00018584838281S0‘b2b1b0‘

‘ 0 ‘ 0 o ‘318 $17 S16 S15 S14 S13 S12 S11 S10 S9 ‘ bs bs bs‘

Syntax:

BAL S,R;
Constraints:

b <63

-262,144 < S < 262,141
Outcome:

Rp «— PC + 2

PC « PC + SignExt(S)
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.3. BEQ: Relative Branch if Equal
Encoding (format 12, first word at lower address):

‘1‘1 0‘0 0 1 Q‘SQ S So‘az a ao‘bg b bo‘

‘0‘0 Q‘Sg Sg S7 Sﬁ‘Ss S4 S3‘a5 aq ag‘b5 b4 b3‘

Syntax:
BEQ S,R,,Ryp
Constraints:
as<63
b <63

48 Copyright © 2015 Embecosm Limited



ECOSM’

-512<S <511
Outcome:
PC «— (Ry = Rp) ? PC + SignExt(S) : PC + 2

Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.4. BNE: Relative Branch if Not Equal
Encoding (format 12, first word at lower address):

‘1‘1 e‘e 0 1 1‘sQ st so‘ag a; a()‘bgbl bo‘

‘0‘0 Q‘Sg Sg S7 S6‘85 S4 33‘a5 aq ag‘b5 b4 bg‘

Syntax:
BNE S,R,,Ry
Constraints:
a<63
b <63
-512<S <511
Outcome:
PC «— (R, # Rp) ? PC + SignExt(S) : PC + 2
Notes:

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.5. BLTS: Relative Branch if Signed Less Than
Encoding (format 12, first word at lower address):

‘1‘1 e‘e 1 o e‘sQ s so‘ag a; ao‘bgbl bo‘

‘0‘0 Q‘Sg Sg S7 S6‘85 S4 Sg‘as aq ag‘b5 b4 bg‘

Syntax:

BLTS S,R.,Ryp
Constraints:

a<63

b <63

-512<S <511
Outcome:

PC «— (R, < Ryp) ? PC + SignExt(S) : PC + 2

49 Copyright © 2015 Embecosm Limited



ECOSM’

Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.6. BLES: Relative Branch if Signed Less Than or Equal To
Encoding (format 12, first word at lower address):

‘1‘1 0‘0 1 o 1‘82 S1 So‘ag a ao‘bg b bo‘

‘0‘0 Q‘Sg Sg S7 S6‘S5 S4 S3‘a5 aq as‘b5 b4 b3‘

Syntax:
BLES S,R.,Rp
Constraints:
a<63
b <63
-512<S <511
Outcome:
PC « (R, < Rp) ? PC + SignExt(S) : PC + 2
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.7. BLTU: Relative Branch if Unsigned Less Than
Encoding (format 12, first word at lower address):

‘1‘1 e‘e 1 1 0‘32 s So‘ag a; a()‘bgbl bo‘

‘0‘0 Q‘Sg Sg S7 86‘85 S4q 33‘a5 aq a3‘b5 b4 bg‘

Syntax:

BLTU S,R.,Rp
Constraints:

a<63

b <63

-512<S <511
Outcome:

PC « (R, < Rp) ? PC + SignExt(S) : PC + 2

50 Copyright © 2015 Embecosm Limited



ECOSM’

Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.8. BLEU: Relative Branch if Unsigned Less Than or Equal To
Encoding (format 12, first word at lower address):

‘1‘1 0‘0 1 1 1‘52 S1 So‘ag ap ao‘bg b1 bo‘

‘0‘0 Q‘Sg Sg S7 S6‘85 S4 Sg‘as aq ag‘b5 b4 bg‘

Syntax:
BLEU S,R.,R;
Constraints:
a<63
b <63
-512<S <511
Outcome:
PC « (R, < Rp) ? PC + SignExt(S) : PC + 2
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the offset is the number of
words by which to adjust the PC.

Branching to a non-existent location will trigger a bus error exception.

3.10.9. JMP: Absolute Jump
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 o o Q‘dgdldo‘e 0 e‘e 0 a‘

‘a‘e 9‘1 o o e‘d5d4d3‘e 0 e‘e 0 e‘

Syntax:

IMP Ry
Constraints:

d <63
Outcome:

PC «— Rqg
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

51 Copyright © 2015 Embecosm Limited



ECOSM’

Jumping to a non-existent location will trigger a bus error exception.

3.10.10. JAL: Absolute Jump and Link
Encoding (format 8, first word at lower address):

‘1‘1 9‘1 o o 1\(:12(:11 do\e 0 O‘bgbl bo‘

‘a‘e e‘e o o e‘d5d4d3‘e 0 e‘b5b4b3‘

Syntax:

JAL Ry, Ry
Constraints:

b <63

d=<63
Outcome:

Ry, <~ PC + 2

PC — Ry4
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jumping to a non-existent location will trigger a bus error exception.

3.10.11. JEQ: Absolute Jump if Equal
Encoding (format 8, first word at lower address):

‘1‘1 9‘1 0 1 e‘dgdl do‘ag a, ao‘bgbl bo‘

‘0‘0 0‘0 0 © 0‘d5 d4 d3‘a5 aq ag‘b5 b4 b3‘

Syntax:
JEQ Rd,Ra,Rp
Constraints:
a<63
b <63
d=<63
Outcome:
PC— (Ry=Rp)?Ryq:PC+2
Notes:

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.12. INE: Absolute Jump if Not Equal
Encoding (format 8, first word at lower address):

52 Copyright © 2015 Embecosm Limited



ECOSM’

‘ 1‘ 1 0 ‘1 e 1 o ‘dg d; do‘ag a; ao‘bg b, bo‘

‘e ‘e 0 ‘e e 0 o ‘ds da dg‘as a4 ag‘bS ba bg‘

Syntax:
INE R4, R4, Rp
Constraints:
a<63
b <63
d <63
Outcome:
PC«— (Ry#Rp) PRy : PC+ 2
Notes:

Remember that the program counter is a word address, so the value in Rq should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.13. JLTS: Absolute Jump if Signed Less Than
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 1 o e‘dg d; do‘ag ai ao‘bg b bo‘

‘a ‘e 0 ‘e e 0 o ‘ds da dg‘as as ag‘b5 by bg‘

Syntax:

JLTS Ry,Ra, Ry
Constraints:

a<63

b <63

d=<63
Outcome:

PC— (Ry<Rp)?Ryq:PC+2
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.14. JLES: Absolute Jump if Signed Less Than or Equal To
Encoding (format 8, first word at lower address):

‘1‘1 0‘1161d2d1d0aga1a0b2b1b0

53 Copyright © 2015 Embecosm Limited



ECOSM’

‘e‘e e‘e o o e‘d5d4d3 as a4 az|bs bs by

Syntax:

JLES R4,R.,Rp
Constraints:

as<63

b <63

d <63
Outcome:

PC— (Ry=Rp)?Ry:PC+2
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.15. JLTU: Absolute Jump if Unsigned Less Than
Encoding (format 8, first word at lower address):

‘1‘1 9‘1 1 1 e‘dgdl do‘ag a, ao‘bgbl bo‘

‘e‘e a‘e o o 6‘d5d4d3‘a5 a4 ag‘b5b4b3‘

Syntax:
ILTU Ryq,Ra,Rp
Constraints:
a<63
b <63
d <63
Outcome:
PC— (Ry<Rp)?Ryq:PC+2
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.16. JLEU: Absolute Jump if Unsigned Less Than or Equal To
Encoding (format 8, first word at lower address):

‘1‘1 0‘1111d2d1d0a2a1a0b2b1b0

54 Copyright © 2015 Embecosm Limited



ECOSM’

‘e‘e e‘e o o e‘d5d4d3 as a4 az|bs bs by

Syntax:
JLEU R4,Ra, Ry
Constraints:
a<63
b <63
d<63
Outcome:
PC«— (Ra<Rp)?Ry:PC+2
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.17. JMPL: Absolute Jump Long
Encoding (format 8, first word at lower address):

‘1‘1 9‘1 o o e‘dzdldo‘e 0 e‘e 0 e‘

‘e‘a e‘a o o 1‘d5d4d3‘6 0 e‘a 0 a‘

Syntax:
IMPL Ry
Constraints:
d <62
(d%2)=2
Outcome:
PC « (Rg+1 << 16) | Rq
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jumping to a non-existent location will trigger a bus error exception.

3.10.18. JALL: Absolute Jump Long and Link
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 o o 1‘d2d1 do‘e 0 e‘bgbl bo‘

‘a‘e e‘e o o 1‘d5d4d3‘0 0 0‘b5b4b3‘

Syntax:

55 Copyright © 2015 Embecosm Limited



ECOSM’

JALL R4,Rp
Constraints:

b <63

d <62

(d% 2)=2
Outcome:

Ry, <~ PC + 2

PC «— (Rq+1 << 16) | Rq
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jumping to a non-existent location will trigger a bus error exception.

3.10.19. JEQL: Absolute Jump Long if Equal
Encoding (format 8, first word at lower address):

‘ 1‘ 1 0 ‘1 e 1 o ‘dg d; do‘ag a; ao‘bg by bo‘

‘e ‘e 0 ‘e e o 1 ‘d5 da dg‘a5 a4 ag‘bs ba bg‘

Syntax:
JEQL Ry, RasRp
Constraints:
a<63
b <63
d< 62
(d%2)=2
Outcome:
PC— (Ri=Ryp) ?((Rg+1 << 16) | Rg) : PC + 2
Notes:

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.20. INEL: Absolute Jump Long if Not Equal
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 0 1 e‘dg d; do‘ag ai ao‘bg b bo‘

‘0‘0 0‘0 0 © 1‘d5 ds d3‘a5 as ag‘b5 bg b3‘

Syntax:
INEL Rg,Ra,Rp

56 Copyright © 2015 Embecosm Limited



ECOSM’

Constraints:

a<63

b <63

d <62

(d%2)=2
Outcome:

PC «— (Ry # Rp) ? ((Rg+1 << 16) | Rg) : PC + 2
Notes:

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.21. JLTSL: Absolute Jump Long if Signed Less Than
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 1 o e‘dg d; do‘ag a ao‘bg b bo‘

‘e‘e e‘e e o 1‘d5d4d3‘a5 a4 ag‘b5b4b3‘

Syntax:
ILTSL R4,Ra,Rp
Constraints:
a<63
b <63
d=< 62
(d% 2)=2
Outcome:
PC «— (Rg < Rp) ? (Rg+1 << 16) | Rq) : PC + 2
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.22. JLESL: Absolute Jump Long if Signed Less Than or Equal To
Encoding (format 8, first word at lower address):

‘1‘1 9‘1 1 o 1‘d2d1 do‘ag a; ao‘bgbl bo‘

‘0‘0 0‘0 0 © 1‘d5 ds d3‘&5 aq a3‘b5 b4 bg‘

Syntax:

57 Copyright © 2015 Embecosm Limited



ECOSM’

JLESL Ry,R.,Ryp
Constraints:

a<63

b <63

d <62

(d%2)=2
Outcome:

PC — (Ry=Rp) ? ((Rg+1 << 16) | Rg) : PC + 2
Notes:

The comparison between R, and Ry, is a signed comparison, where the contents of each
register is treated as a 2's-complement signed number.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.23. JLTUL: Absolute Jump Long if Unsigned Less Than
Encoding (format 8, first word at lower address):

‘1‘1 0‘1 1 1 Q‘dg d; do‘az a; ao‘bg b bo‘

‘e‘e e‘e o o 1‘d5d4d3‘a5 a4 ag‘b5b4b3‘

Syntax:
ILTUL R4,Ra,Rp
Constraints:
a<63
b <63
d=<62
(d%2)=2
Outcome:
PC « (Rg < Rp) ? ((Rg+1 << 16) | Rq) : PC + 2
Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in Ry should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.10.24. JLEUL: Absolute Jump Long if Unsigned Less Than or Equal To
Encoding (format 8, first word at lower address):

‘1‘1 0‘1111d2d1d0a2a1a0b2b1b0

58 Copyright © 2015 Embecosm Limited



ECOSM’

‘e‘e e‘e o o 1‘d5d4d3 as a4 az|bs bs by

Syntax:

JLEUL R4,R.,Rp

Constraints:
a<63
b <63
d <62
(d%2)=2

Outcome:
PC «— (Ry < Rp) ? ((Rg+1 << 16) | Ry) : PC + 2

Notes:
The comparison between R, and Ry, is an unsigned comparison.

Remember that the program counter is a word address, so the value in R4 should be
a word address.

Jump to a non-existent location will trigger a bus error exception.

3.11. Detailed Descriptions of 32-bit Miscellaneous Instructions
There are currently no 32-bit instructions defined in this class.

59 Copyright © 2015 Embecosm Limited



ECOSM’

Chapter 4. ABI

4.1. Defined Registers

Because of the variability in the architecture it is difficult to be too rigid on the ABI. In any
case part of the purpose of this architecture to allow exploration of different ABI's. Within this
section, the identifier Ry, ,x is used to indicate the highest numbered register in the architecture.

The meanings of the following registers are defined.

. RO: Link Register

. R1: Stack Pointer

Note in particular no frame pointer is defined. It is up to the implementer to decide policy with

regard to use of a frame pointer.

4.2, Calling Convention

Again this is flexible, particularly where there can be very few registers. These are the general
guidelines.

. All byte arguments are promoted to 16-bits.

. Arguments are passed in R2-R7 (or R2-Ry,,x if there are fewer than 8 registers).

. Results are returned on the same registers used to pass arguments.

. Varargs are always passed on the stack.

. A good guideline is that approximately one third of unallocated registers should be caller

saved, although that can increase to one half where there are plenty of registers. The
following registers (if present) are caller saved: R10, R13, R16, R19, R22, R25, R28, R31, R33,
R35, R37, R39, R41, R43, R45, R47, R49, R51, R53, R55, R57, R59, R61 and R63.

60 Copyright © 2015 Embecosm Limited



	AAP: An Altruistic Processor
	Table of Contents
	Chapter 1. Introduction
	1.1.  Revision History

	Chapter 2. Architecture Description
	2.1.  Basic architectural features
	2.2. Event Handling
	2.3. NOP Behavior

	Chapter 3. Instructions
	3.1.  Notation
	3.1.1. Assembler Notation

	3.2.  Instruction Format
	3.3.  Summary of Instructions
	3.3.1. 16-bit Instructions of AAP
	3.3.2. 32-bit Instructions of AAP

	3.4.  Detailed Descriptions of 16-bit ALU Instructions
	3.4.1.  NOP: No Operation
	3.4.2.  ADD: Unsigned Add
	3.4.3.  SUB: Unsigned Subtract
	3.4.4.  AND: Bitwise AND
	3.4.5.  OR: Bitwise OR
	3.4.6.  XOR: Bitwise Exclusive OR
	3.4.7.  ASR: Arithmetic Shift Right
	3.4.8.  LSL: Logical Shift Left
	3.4.9.  LSR: Logical Shift Right
	3.4.10.  MOV: Move Register to Register
	3.4.11.  ADDI: Unsigned Add Immediate
	3.4.12.  SUBI: Unsigned Subtract Immediate
	3.4.13.  ASRI: Arithmetic Shift Right Immediate
	3.4.14.  LSLI: Logical Shift Left Immediate
	3.4.15.  LSRI: Logical Shift Right Immediate
	3.4.16.  MOVI: Move Immediate to Register

	3.5.  Detailed Descriptions of 16-bit Load/Store Instructions
	3.5.1.  LDB: Indexed Load Byte
	3.5.2.  LDW: Indexed Load Word
	3.5.3.  LDB: Indexed Load Byte with Postincrement
	3.5.4.  LDW: Indexed Load Word with Postincrement
	3.5.5.  LDB: Indexed Load Byte with Predecrement
	3.5.6.  LDW: Indexed Load Word with Predecrement
	3.5.7.  STB: Indexed Store Byte
	3.5.8.  STW: Indexed Store Word
	3.5.9.  STB: Indexed Store Byte with Postincrement
	3.5.10.  STW: Indexed Store Word with Postincrement
	3.5.11.  STB: Indexed Store Byte with Predecrement
	3.5.12.  STW: Indexed Store Word with Predecrement

	3.6.  Detailed Descriptions of 16-bit Branch/Jump Instructions
	3.6.1.  BRA: Relative Branch
	3.6.2.  BAL: Relative Branch and Link
	3.6.3.  BEQ: Relative Branch if Equal
	3.6.4.  BNE: Relative Branch if Not Equal
	3.6.5.  BLTS: Relative Branch if Signed Less Than
	3.6.6.  BLES: Relative Branch if Signed Less Than or Equal To
	3.6.7.  BLTU: Relative Branch if Unsigned Less Than
	3.6.8.  BLEU: Relative Branch if Unsigned Less Than or Equal To
	3.6.9.  JMP: Absolute Jump
	3.6.10.  JAL: Absolute Jump and Link
	3.6.11.  JEQ: Absolute Jump if Equal
	3.6.12.  JNE: Absolute Jump if Not Equal
	3.6.13.  JLTS: Absolute Jump if Signed Less Than
	3.6.14.  JLES: Absolute Jump if Signed Less Than or Equal To
	3.6.15.  JLTU: Absolute Jump if Unsigned Less Than
	3.6.16.  JLEU: Absolute Jump if Unsigned Less Than or Equal To

	3.7.  Detailed Descriptions of 16-bit Miscellaneous Instructions
	3.7.1.  RTE: Return from Exception

	3.8.  Detailed Descriptions of 32-bit ALU Instructions
	3.8.1.  NOP: No Operation
	3.8.2.  ADD: Unsigned Add
	3.8.3.  SUB: Unsigned Subtract
	3.8.4.  AND: Bitwise AND
	3.8.5.  OR: Bitwise OR
	3.8.6.  XOR: Bitwise Exclusive OR
	3.8.7.  ASR: Arithmetic Shift Right
	3.8.8.  LSL: Logical Shift Left
	3.8.9.  LSR: Logical Shift Right
	3.8.10.  MOV: Move Register to Register
	3.8.11.  ADDI: Unsigned Add Immediate
	3.8.12.  SUBI: Unsigned Subtract Immediate
	3.8.13.  ASRI: Arithmetic Shift Right Immediate
	3.8.14.  LSLI: Logical Shift Left Immediate
	3.8.15.  LSRI: Logical Shift Right Immediate
	3.8.16.  MOVI: Move Immediate to Register
	3.8.17.  ADDC: Unsigned Add with Carry
	3.8.18.  SUBC: Unsigned Subtract with Carry
	3.8.19.  ANDI: Bitwise AND Immediate
	3.8.20.  ORI: Bitwise OR immediate
	3.8.21.  XORI: Bitwise Exclusive OR Immediate

	3.9.  Detailed Descriptions of 32-bit Load/Store Instructions
	3.9.1.  LDB: Indexed Load Byte
	3.9.2.  LDW: Indexed Load Word
	3.9.3.  LDB: Indexed Load Byte with Postincrement
	3.9.4.  LDW: Indexed Load Word with Postincrement
	3.9.5.  LDB: Indexed Load Byte with Predecrement
	3.9.6.  LDW: Indexed Load Word with Predecrement
	3.9.7.  STB: Indexed Store Byte
	3.9.8.  STW: Indexed Store Word
	3.9.9.  STB: Indexed Store Byte with Postincrement
	3.9.10.  STW: Indexed Store Word with Postincrement
	3.9.11.  STB: Indexed Store Byte with Predecrement
	3.9.12.  STW: Indexed Store Word with Predecrement

	3.10.  Detailed Descriptions of 32-bit Branch/Jump Instructions
	3.10.1.  BRA: Relative Branch
	3.10.2.  BAL: Relative Branch and Link
	3.10.3.  BEQ: Relative Branch if Equal
	3.10.4.  BNE: Relative Branch if Not Equal
	3.10.5.  BLTS: Relative Branch if Signed Less Than
	3.10.6.  BLES: Relative Branch if Signed Less Than or Equal To
	3.10.7.  BLTU: Relative Branch if Unsigned Less Than
	3.10.8.  BLEU: Relative Branch if Unsigned Less Than or Equal To
	3.10.9.  JMP: Absolute Jump
	3.10.10.  JAL: Absolute Jump and Link
	3.10.11.  JEQ: Absolute Jump if Equal
	3.10.12.  JNE: Absolute Jump if Not Equal
	3.10.13.  JLTS: Absolute Jump if Signed Less Than
	3.10.14.  JLES: Absolute Jump if Signed Less Than or Equal To
	3.10.15.  JLTU: Absolute Jump if Unsigned Less Than
	3.10.16.  JLEU: Absolute Jump if Unsigned Less Than or Equal To
	3.10.17.  JMPL: Absolute Jump Long
	3.10.18.  JALL: Absolute Jump Long and Link
	3.10.19.  JEQL: Absolute Jump Long if Equal
	3.10.20.  JNEL: Absolute Jump Long if Not Equal
	3.10.21.  JLTSL: Absolute Jump Long if Signed Less Than
	3.10.22.  JLESL: Absolute Jump Long if Signed Less Than or Equal To
	3.10.23.  JLTUL: Absolute Jump Long if Unsigned Less Than
	3.10.24.  JLEUL: Absolute Jump Long if Unsigned Less Than or Equal To

	3.11.  Detailed Descriptions of 32-bit Miscellaneous Instructions

	Chapter 4. ABI
	4.1. Defined Registers
	4.2. Calling Convention


