
AAP: An Altruistic Processor
A Student Implementation for FPGA

Dan Gorringe
Application Note 14. Issue 1.0
Publication date November 2015

ii Copyright © 2015 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0.

This license means you are free to:
• Share—copy and redistribute the material in any medium or format;

• Adapt—remix, transform, and build upon the material;

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
• Attribution.—You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

• ShareAlike—If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

• No additional restrictions—You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

• Nothing in this license impairs or restricts the author's moral rights.

Note
You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

Embecosm® is the business name of Embecosm® Limited, a private limited company
registered in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by-sa/4.0/

iii Copyright © 2015 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. Prerequisites ... 1
2. Processors? ... 2

2.1. But Dan, what is a processor? ... 2
2.2. Well Dan, my computer actually has 4 of these GHz ... 2
2.3. Well… what's inside a processor? ... 2

2.3.1. Fetch .. 2
2.3.2. Decoder .. 2
2.3.3. Execute .. 2

2.4. OK, but what's so important about former Lieutenant-Governors of Manitoba
born in 1938? .. 2

3. The Requirements of Our Processor .. 3
3.1. Memories .. 3

3.1.1. Instruction Memory .. 3
3.1.2. Data Memory ... 3
3.1.3. Registers .. 3

3.2. Instructions .. 3
3.2.1. No operation ... 3
3.2.2. Unsigned add ... 3
3.2.3. Unsigned subtract .. 3
3.2.4. Bitwise AND ... 3
3.2.5. Bitwise AND immediate .. 4
3.2.6. Bitwise OR ... 4
3.2.7. Bitwise OR immediate .. 4
3.2.8. Bitwise exclusive OR .. 4
3.2.9. Bitwise exclusive OR immediate ... 4
3.2.10. Logical shift left .. 4
3.2.11. Logical shift right ... 4
3.2.12. Arithmetic shift right .. 4
3.2.13. Move register to register ... 4
3.2.14. Unsigned add immediate .. 5
3.2.15. Unsigned subtract immediate ... 5
3.2.16. Arithmetic shift right by immediate .. 5
3.2.17. Logical shift left by immediate .. 5
3.2.18. Logical shift right by immediate ... 5
3.2.19. Move immediate to register ... 5
3.2.20. Move immediate to register ... 5
3.2.21. Indexed load byte ... 5
3.2.22. Indexed load word .. 5
3.2.23. Indexed load byte with postincrement .. 5
3.2.24. Indexed load word with postincrement ... 5
3.2.25. Indexed load byte with predecrement ... 5
3.2.26. Indexed load word with postincrement ... 5
3.2.27. Indexed store byte .. 5
3.2.28. Indexed store word ... 6
3.2.29. Indexed store byte with postincrement ... 6
3.2.30. Indexed store word with postincrement .. 6
3.2.31. Indexed store byte with predecrement .. 6
3.2.32. Indexed store word with predecrement ... 6
3.2.33. Relative branch .. 6
3.2.34. Relative branch and link .. 6

iv Copyright © 2015 Embecosm Limited

3.2.35. Relative branch if equal ... 6
3.2.36. Relative branch if not equal ... 6
3.2.37. Relative branch if signed less than ... 6
3.2.38. Relative branch if signed greater than .. 6
3.2.39. Relative branch if unsigned less than ... 6
3.2.40. Relative branch if unsigned greater than .. 6
3.2.41. Absolute jump .. 6
3.2.42. Absolute jump and link .. 6
3.2.43. Absolute jump if equal ... 7
3.2.44. Absolute jump if not equal ... 7
3.2.45. Absolute jump if signed less than .. 7
3.2.46. Absolute jump if signed greater than .. 7
3.2.47. Absolute jump if unsigned less than .. 7
3.2.48. Absolute jump if unsigned greater than .. 7

4. Our Design ... 8
4.1. Fetch .. 8
4.2. Decode .. 8
4.3. Execute ... 8

5. Decoder ... 9
5.1. Why do we Decode Mr Wayne? ... 9
5.2. So what is Useful for our Execute? .. 9
5.3. Our Decoder ... 9
5.4. Debugging Verilog ... 12

5.4.1. Test Bench ... 12
6. Our Memories ... 16

6.1. Instruction Memory .. 16
6.2. Register ... 18
6.3. Data Memory .. 19
6.4. List ... 19
6.5. Adding to testbench ... 19

7. Our Fetch and Program Counter ... 21
7.1. Flush .. 22
7.2. Adding to testbench ... 22

8. Our Execution ... 23
8.1. NOP commands .. 23
8.2. Unsigned add ... 23
8.3. Bitwise AND .. 24
8.4. Arithmetic shift right .. 24
8.5. Move register to register ... 24
8.6. Unsigned add immediate .. 24
8.7. Logical shift left immediate ... 24
8.8. Indexed load byte ... 25
8.9. Indexed load word .. 25
8.10. Carry bit ... 25
8.11. Bitwise exclusive or immediate ... 26
8.12. Relative branch ... 26
8.13. Absolute Jump ... 28
8.14. … and link ... 28
8.15. Jump long .. 29

9. FPGA ... 30
9.1. Resets ... 30
9.2. There is something in the air… .. 30
9.3. UART .. 31

v Copyright © 2015 Embecosm Limited

9.3.1. UART clock .. 31
9.3.2. Transmit ... 31
9.3.3. Receive ... 33
9.3.4. UART commands .. 34
9.3.5. Congratulations .. 36

References .. 37

1 Copyright © 2015 Embecosm Limited

Chapter 1. Introduction
It was a bright cold day in August, and the clocks were striking 50 million times a second. Dan's
implementation of an AAP processor is complete, and he's ready to share it with the world.

I am a student, with no previous knowledge of making a processor. Therefore this is my first
attempt, and is by no means a definitive guide to creating a processor. Its purpose is to allow
a novice to grasp the basics via an easy to understand processor.

We will take our design from Embecosm®'s previous application note, AAP: An Altruistic
Processor. Our hardware description language of choice will be Verilog, which if you have not
come across will look a lot like C. For this Application Note you will not need to already know
Verilog, but it would be advisable to have a quick read and play with my last application note:
ChipHack For Teens.

1.1. Prerequisites
This guide is primarily focused at Linux users, however the ideas are the same regardless of
operating system.

Note
You can always trial Linux on your machine, most distributions are free. I would
recommend something like ElementaryOS[1] for a beginner.

It is also advised to have IVerilog and GTKwave installed for simulation on your computer.

As this Application Note is written to be used with a DE0 Nano, to put the processor onto the
FPGA we will be using Quartus® software.

http://www.embecosm.com/resources/appnotes/#EAN13
http://www.embecosm.com/resources/appnotes/#EAN13
http://www.embecosm.com/resources/appnotes/#EAN12

2 Copyright © 2015 Embecosm Limited

Chapter 2. Processors?
2.1. But Dan, what is a processor?
We all know we have a CPU in our computers, which Simon Lane correctly confirmed stands
for Central Processing Unit not Computer Processing Unit[2]. Processors are the components
in computers which are responsible for the computation and flow control, the adding and
subtracting and moving from here to there.

2.2. Well Dan, my computer actually has 4 of these GHz
That's nice. A GHz is a measurement of how fast the clock of the processor is. For example if
you were to buy a Raspberry Pi 2, that has a clock speed of 250MHz, you would get a processor
that has a clock that can switch on and off 250,000,000 times a second! Or if you were to
steal my phone, with a clock speed of 2.5GHz you would have a a clock that can switch on
and of 2,500,000,000 times a second!

Note
Please don't steal my phone.

2.3. Well… what's inside a processor?
At the heart of it a processor is just a bunch of wires that are either on or off (unless you
are working with a quantum computer, in which case this is probably not the guide you are
looking for[3]). There are numerous different stages in a processor.

2.3.1. Fetch
Fetch will see the program counter (the address of the current instruction) and go look up this
address in our instruction memory, where all tasks are being kept.

2.3.2. Decoder
From our fetch stage we get a random looking number, this is where we give it a purpose!
This stage changes a long string of binary into a more meaningful representation that Execute
will use.

2.3.3. Execute
Execute then takes this data, and based on which operation has been decoded, will then follow
out everything for that operation with the other values it has been given. These other values
are known as operands of the instruction.

2.4. OK, but what's so important about former Lieutenant-Governors of
Manitoba born in 1938?
A common mistake, Harvard actually refers to Harvard architecture not John the politician.
A significant difference about AAP and normal (von Neumann) processors is that it uses
the Harvard Architecture model where data and instructions are kept in separate memories
instead of one. This is useful for security as one common hack is to load data whilst tricking
a processor into thinking you are loading instructions, and then executing the data.

3 Copyright © 2015 Embecosm Limited

Chapter 3. The Requirements of Our Processor
Before we start designing our processor we must know what it needs to be capable of, so we
can choose useful blocks for its implementation.

3.1. Memories
As we know our processor is a Harvard architecture, therefore we will need to program 3
separate memories, which we can read and write to (and from).

3.1.1. Instruction Memory
We need an instruction memory, so we can store what we want to happen, a list of things for
the processor to execute.

3.1.2. Data Memory
Is where we keep information long term, where we can store it. This will be the smallest of the
memories, with a width of only a byte (8 bits).

3.1.3. Registers
The short time version of our data memory, the things we are working with.

3.2. Instructions
An AAP processor is capable of executing instructions that are both 16 and 32 bits in size.
Therefore our processor must be able to determine which it has received and act accordingly.

The AAP architecture specification lists over 50 different operations which we will need to
implement. But what do they all mean?

3.2.1. No operation
It may sound simple but in the future it will assist with the debugging of the board and
therefore becomes not as simple.

3.2.2. Unsigned add
An add takes the value from two registers, sums them and places in another designated
register.

I hear you wonder What is the difference between unsigned and signed Dan?. Well an unsigned
value is just whatever value it is, but cannot be less than 0. However a signed number has a
special bit at the top which tells us if it is negative, using a system called two's compliment.
Don't worry, we wont have to do any fancy code for that.

3.2.3. Unsigned subtract
A subtract takes the value from two registers, takes away the second from the first and places
in the designated register.

3.2.4. Bitwise AND
This will take two registers and complete an AND when comparing the two in binary. for
example:

10101001

4 Copyright © 2015 Embecosm Limited

00101111
________ AND
00101001

3.2.5. Bitwise AND immediate
This can only be a 32 bit instruction, and bitwise ANDs the number in the register with a
given value.

3.2.6. Bitwise OR
This is similar to AND, however with an OR, if the same bit in either value is 1 the output is 1.

10101001
00101111
________ OR
10101111

3.2.7. Bitwise OR immediate
This can only be a 32 bit instruction, and it bitwise ORs the number in the register with a
given value.

3.2.8. Bitwise exclusive OR
For this instruction, the output is 1 if and only if one of the operand is 1, otherwise it is 0.

10101001
00101111
________ XOR
10000110

3.2.9. Bitwise exclusive OR immediate
This can only be a 32 bit instruction, and it bitwise XORs the number in the register with
a given value.

3.2.10. Logical shift left
This instruction moves all the bits along by the amount in the register given, effectively
doubling the number.

3.2.11. Logical shift right
This instruction will move all the bits along by the amount in the register given, but to the
right, effectively halving the number.

3.2.12. Arithmetic shift right
This is used in conjunction with two's compliment signed numbers. It is similar to a logical
shift right however the new bit(s) is the same as the sign bit. It's shifted by the amount in
the register given

3.2.13. Move register to register
This instruction puts the value of one register into this other register.

5 Copyright © 2015 Embecosm Limited

3.2.14. Unsigned add immediate
This instruction adds the register given plus the number given, placing the result into the
destination register.

3.2.15. Unsigned subtract immediate
This instruction takes the number given away from the value in the register given and place
in the register designated.

3.2.16. Arithmetic shift right by immediate
This instruction is exactly the same as the normal Arithmetic shift, but instead it shifts by
an amount given in the command.

3.2.17. Logical shift left by immediate
This instruction shifts all the bits along to left by this amount.

3.2.18. Logical shift right by immediate
This instruction shifts all the bits right by this amount to the right.

3.2.19. Move immediate to register
Put this number in this register.

3.2.20. Move immediate to register
Put this number in this register.

3.2.21. Indexed load byte
Look up the byte destination you are given and load only 8 bits into your 16 bit register.

3.2.22. Indexed load word
Look up a byte and load it into your register and then load up the next byte as the second
part of your register to load a full 16 bits.

3.2.23. Indexed load byte with postincrement
Look up in Data memory the value you are given in the register and store it into the destination
register you are given, but increment the memory reference once complete.

3.2.24. Indexed load word with postincrement
Look up in Data memory the value you are given in the register and store it into the destination
register you are given, but increment the memory reference once complete.

3.2.25. Indexed load byte with predecrement
Look up in Data memory the value you are given in the register and store it into the destination
register you are given, decrementing the memory reference before the load.

3.2.26. Indexed load word with postincrement
Look up in Data memory the value you are given in the register and store it into the destination
register you are given, decrementing the memory reference before the load.

3.2.27. Indexed store byte
Put the value of the register you are given into the place in data memory from the register
with the value of destination.

6 Copyright © 2015 Embecosm Limited

3.2.28. Indexed store word
Put the value of the register you are given into the place in data memory from the register
with the value of destination.

3.2.29. Indexed store byte with postincrement
Put the value of the register you are given into the place in data memory from the register with
the value of destination, but increment the memory reference once complete.

3.2.30. Indexed store word with postincrement
Put the value of the register you are given into the place in data memory from the register with
the value of destination, but increment the memory reference once complete.

3.2.31. Indexed store byte with predecrement
Put the value of the register you are given into the place in data memory from the register with
the value of destination, decrementing the memory reference before the store.

3.2.32. Indexed store word with predecrement
Put the value of the register you are given into the place in data memory from the register with
the value of destination, decrementing the memory reference before the store.

3.2.33. Relative branch
Move the program counter along by this many, to skip out the instructions between.

3.2.34. Relative branch and link
Move the program counter along by this many, to skip out the instructions between. But save
a record of the program counter into a register to enable a return to this point later.

3.2.35. Relative branch if equal
Only change the program counter if these two registers are equal.

3.2.36. Relative branch if not equal
Only change the program counter if these two registers are different.

3.2.37. Relative branch if signed less than
Only change the program counter if the first register is smaller than the second.

3.2.38. Relative branch if signed greater than
Only jump the program counter if the first register is larger than the second.

3.2.39. Relative branch if unsigned less than
Only change the program counter if the first register is smaller than the second.

3.2.40. Relative branch if unsigned greater than
Only jump the program counter if the first register is larger than the second.

3.2.41. Absolute jump
Make program counter equal to the value in the given register.

3.2.42. Absolute jump and link
Make program counter equal to the value in the given register. But save a record of the program
counter into a second register to allow us to return to this point.

7 Copyright © 2015 Embecosm Limited

3.2.43. Absolute jump if equal
Make program counter equal to the value in the given register if the specified two other registers
are equal.

3.2.44. Absolute jump if not equal
Make program counter equal to the value in the given register if the specified two other registers
are different.

3.2.45. Absolute jump if signed less than
Make program counter equal to the value in the given register if the first register is smaller
than the second.

3.2.46. Absolute jump if signed greater than
Make program counter equal to the value in the given register if the first register is larger
than the second.

3.2.47. Absolute jump if unsigned less than
Make program counter equal to the value in the given register if the first register is smaller
than the second.

3.2.48. Absolute jump if unsigned greater than
Make program counter equal to the value in the given register if the first register is larger
than the second.

8 Copyright © 2015 Embecosm Limited

Chapter 4. Our Design
Now we understand what our processor needs to do, we shall draw our design, so that we can
understand how all the parts work together.

4.1. Fetch
Our fetch will get a signal from the program counter, read an instruction from instruction
memory and output it to the decoder.

Note
Our program counter will also be inside the fetch module, though it is common to
show it as part of the registers.

4.2. Decode
Our decoder will get a long binary number and will split it up into recognizable chunks and
send those of to execute. Also it might occasionally send a flush signal to fetch if it detects a
32 bit command, as a 32 bit command will be made up of two separate 16 bit commands, but
we do not want the second 16 bit command to run on its own as it would not work.

4.3. Execute
Execute will receive the set of inputs from decode, and determine what it is doing by an
operation number input. It might then need to write to the data memory or the registers,
and it might need to change the program counter for the jump operations, depending on the
instruction that was decoded.

9 Copyright © 2015 Embecosm Limited

Chapter 5. Decoder
The first thing we will make is a decoder, as it can work on its own and we can then try
debugging it in GTKwave.

An important concept in our processor is that you can have 16 and 32 bit instructions. But
how do you know how much data needs to be fetched? Instead of some complex mess we fetch
a 16 bit instruction that becomes the bottom half of fetchoutput. On the next clock cycle, this
becomes the upper half of fetchoutput and a new bottom half appears. We only read the top
half during decode unless it indicates to us that the instruction is really 32 bits long, in which
case we then use the entire 32 bit word.

5.1. Why do we Decode Mr Wayne?
So we can actually get stuff done.
We need to break down our 16 bit number into something that will be useful for the execute
stage.

5.2. So what is Useful for our Execute?
This is where we look at the Application Note for AAP. For example, we may get an instruction
like this:

0000001100001010

This word is supposed to tell us to add register 1 to register 2 and put the result in register
3. Fortunately all similar commands have a similar encoding. For example an add instruction
can be shown generically as:

0000001dddaaabbb

The first digit on all instructions tells us whether it is 16 or 32 bit. A 0 indicates 16. The next
6 bits tells us the operation number. The next 3 bits will almost always tell us the destination
register (d). a stands for first source and b for second source.

With this knowledge we can make our decoder always make destination equal to bit 6, 7 and
8. We can also always assign a and b equal to where they are in this 16 bit command. It doesn't
matter if we don't use this in execute. If we look at the list of instruction we can see other
formats. lots of the instructions have three is instead of bs, so we will need to decode these
into another value.
In short, we need to group up the different parts of the instructions so we can refer to those
by name in our execution module.

5.3. Our Decoder
We start our decoder module by declaring its inputs and outputs:

module Decoder (fetchoutput,
 destination,
 operationnumber,
 source_1,
 source_2,

10 Copyright © 2015 Embecosm Limited

 unsigned_1,
 unsigned_2,
 unsigned_3,
 unsigned_4,
 unsigned_5,
 signed_1,
 signed_2,
 signed_3,
 super_duper_a,
 super_duper_b
);

"What are all those outputs?" I hear you cry. Well these are what we are going to be splitting
fetchoutput into. Those are all the groups in all the combinations of instructions.

We need to make sure we have all the right inputs and outputs. We need to declare all the
Verilog registers.

// Registers //
reg operation;
reg [05:00] destination;
reg [05:00] source_1;
reg [05:00] source_2;
reg [05:00] unsigned_1;
reg [15:00] unsigned_2;
reg [08:00] unsigned_3;
reg [09:00] unsigned_4;
reg [08:00] unsigned_5;
reg [05:00] operationnumber;
reg [21:00] signed_1;
reg [15:00] signed_2;
reg [09:00] signed_3;

reg super_duper_a; // used for 32 bit instructions that cannot
reg super_duper_b; // be different using operation number alone

// Wire Declarations //
wire [31:00] fetchoutput;
wire bit_check;

To check whether an instruction is 32 or 16 bit we define the wire bit_check. If an instruction
is 32 bits long then the first digit is a 1 else it will be 0. We will assign bit_check to equal
the first digit:

assign bit_check = fetchoutput[31];

If the instruction is 32 bit we will decode it differently.

We always want to decode when we detect a new fetchoutput.

11 Copyright © 2015 Embecosm Limited

always @(fetchoutput) begin

First we check if it is 16 bit, is so we will decode accordingly:

if (bit_check == 0) begin
 operationnumber = fetchoutput [30:25];
 destination = fetchoutput [24:22];
 source_1 = fetchoutput [21:19];
 source_2 = fetchoutput [18:16];
 unsigned_1 = fetchoutput [18:16];
 unsigned_2 = fetchoutput [21:16];
 unsigned_3 = fetchoutput [24:16];
 signed_1 = fetchoutput [24:16];
 signed_2 = fetchoutput [24:16];
 signed_3 = fetchoutput [24:16];
 super_duper_a = 0;
 super_duper_b = 0;
end

We know where in fetchoutput each group is thanks to the AAP documentation. However if
an implementation is being made for a different architecture, these are probably all different.

As you remember fetchoutput actually contains 2 instructions so when it is only 16 bits we
only refer to the top one. super_duper is not needed for 16 bit instructions.

Otherwise, if we detect that the instruction is 32 bits long, we decode it as follows:

else if (bit_check == 1) begin

 destination[02:00] = fetchoutput [24:22];
 destination[05:03] = fetchoutput [08:06];
 source_1[02:00] = fetchoutput [21:19];
 source_1[05:03] = fetchoutput [05:03];
 source_2[02:00] = fetchoutput [18:16];
 source_2[05:03] = fetchoutput [02:00];
 unsigned_1[02:00] = fetchoutput [18:16];
 unsigned_1[05:03] = fetchoutput [02:00];
 unsigned_2[05:00] = fetchoutput [21:16];
 unsigned_2[09:06] = fetchoutput [12:09];
 unsigned_2[15:10] = fetchoutput [05:00];
 unsigned_4[02:00] = fetchoutput [18:16];
 unsigned_4[06:03] = fetchoutput [12:09];
 unsigned_4[09:07] = fetchoutput [02:00];
 unsigned_5[02:00] = fetchoutput [18:16];
 unsigned_5[05:03] = fetchoutput [12:08];
 unsigned_5[08:06] = fetchoutput [02:00];
 signed_1[08:00] = fetchoutput [24:16];
 signed_1[21:09] = fetchoutput [12:00];
 signed_2[02:00] = fetchoutput [24:22];
 signed_2[05:03] = fetchoutput [18:16];
 signed_2[12:06] = fetchoutput [12:06];
 signed_2[15:13] = fetchoutput [02:00];

12 Copyright © 2015 Embecosm Limited

 signed_3[02:00] = fetchoutput [24:22];
 signed_3[09:03] = fetchoutput [12:06];
 operationnumber = fetchoutput [30:25];

 if (fetchoutput[15:09] !== 0) begin // for 32 bit commands that have
 // the same opcode but extra
 // criteria
 super_duper_a = 1;
 end

 if (fetchoutput[9] !== 0) begin // for the bitwise commands
 //that need to be different
 super_duper_b = 1;
 end
 else begin
 super_duper_a = 0;
 super_duper_b = 0;
 end
end

super_duper is used for 32 bit instructions such as "Bitwise AND immediate" where the only
way to tell the difference between the immediate and the normal is whether super_duperis
set to 1.
In 32 bit instructions the operand size is double the size for each group compared to the 16
bit variants. We take the bits assigned to each group in the bottom half of the instruction and
place them in front of the other to produce the correct number.

5.4. Debugging Verilog
So you've made a decode module. Well you think you have, but you have no idea if it works
or not yet.
We will be using Icarus Verilog and GTKwave to analyze our decoder.
You can quickly check that your Decode module has no syntax errors using Icarus:

$ iverilog <file.v>

5.4.1. Test Bench
A test bench will output a file that GTKwave can open, so we can view the values of every wire
and register, over a period of time.
We shall be making our test bench in another .v file in the same directory. Before we declare
our module, we have to state that this file will also be using our decode file. This is done by
importing it using a `include command:

`include "<filename.v>"

The test bench module will not need any inputs and will have no outputs. However we need
to declare lots of wires inside of the module, so they can be connected to the modules we want
to test inside.

module testbench;

13 Copyright © 2015 Embecosm Limited

 wire operation;
 wire [05:00] destination;
 wire [05:00] source_1;
 wire [05:00] source_2;
 wire [05:00] unsigned_1;
 wire [15:00] unsigned_2;
 wire [08:00] unsigned_3;
 wire [09:00] unsigned_4;
 wire [08:00] unsigned_5;
 wire [05:00] operationnumber;
 wire [21:00] signed_1;
 wire [15:00] signed_2;
 wire [09:00] signed_3;

 wire super_duper_a; // used for 32 bit instructions that cannot
 wire super_duper_b; // be different using operation number alone

 reg clock;
 reg reset;

 reg [31:00] fetchoutput;
 wire bit_check;

We then create a copy of the module(s) we want to debug in the test bench and connect their
inputs and outputs with the wires and registers we have created.

 decoder decoder_test (
 fetchoutput[31:00],
 destination[05:00],
 operationnumber[05:00],
 source_1[05:00],
 source_2[05:00],
 unsigned_1[05:00],
 unsigned_2[15:00],
 unsigned_3[08:00],
 unsigned_4[09:00],
 unsigned_5[08:00],
 signed_1[21:00],
 signed_2[15:00],
 signed_3[09:00],
 super_duper_a,
 super_duper_b
);

Next we write the code to create a vcd file to log changes that occur in our decoder. We can
use this later with GTKwave to investigate these changes.

 initial begin
 $dumpfile ("<destinationfilename.vcd>"); // Where to put
 $dumpvars (0, <testbench_version_of_module>); // What to put

14 Copyright © 2015 Embecosm Limited

 #20 // Wait 20
 fetchoutput = 2147483647; // after 20 set fetchoutput to ...
 #20
 fetchoutput = 1;
 #20

 $finish

The syntax to tell the test bench to dump all the files in a module is:

$dumpvars (0, <module>)

The hash followed by a number is a wait, so in total we will have 60 seconds worth of decoding
analyze. Make sure to change fetchoutput after an amount of time otherwise the waves will
be flat. The test bench stops once the $finish is executed.

Now you can run this program through Icarus Verilog the same as any other file. In your
terminal, in the correct directory, run:

$ iverilog testbench.v
$./a.out

Then open the VCD it created with GTKwave.

$ gtkwave <outputfile.vcd>

15 Copyright © 2015 Embecosm Limited

In GTKwave, you can insert all the wires and registers from decoder_test and (hopefully) view
them change after 20 seconds.

16 Copyright © 2015 Embecosm Limited

Chapter 6. Our Memories
This chapter sounds too much like a romantic novel that has just won Waterstone™'s Best
Book of the Year award.

Before we can make an execute module to do stuff with our working decoder, the execute will
need somewhere that it can read and write data to and from.

As you recall, we have three memories that we will need to make: the instruction, data and
the registers. These should all be rather easy to make as after we make one you can just copy
it and change a few of the values and names

6.1. Instruction Memory
Although we will not be writing to this memory yet we will prepare it now for the future.

module TheInstructionMemory (clock,
 reset,
 instruction_rd1,
 instruction_rd2,
 instruction_rd3,
 instruction_rd4,
 instruction_wr1,
 instruction_wr2,
 instruction_wr3,
 instruction_wr4,
 instruction_wr1_data,
 instruction_wr2_data,
 instruction_wr3_data,
 instruction_wr4_data,
 instruction_wr1_enable,
 instruction_wr2_enable,
 instruction_wr3_enable,
 instruction_wr4_enable,
 instruction_rd1_out,
 instruction_rd2_out,
 instruction_rd3_out,
 instruction_rd4_out
);
 input clock;
 input reset;

 // This register has eight ports: four read, four Write

 // read inputs and outputs //

 input [07:00] instruction_rd1; // Which register to read from
 input [07:00] instruction_rd2; // 8 bits wide because we
 input [07:00] instruction_rd3; // have up to 128 data
 input [07:00] instruction_rd4;

 output [15:00] instruction_rd1_out; // What is in that register

17 Copyright © 2015 Embecosm Limited

 output [15:00] instruction_rd2_out;
 output [15:00] instruction_rd3_out;
 output [15:00] instruction_rd4_out;

 // write inputs and outputs //

 input [07:00] instruction_wr1; //Where to write, which register
 input [07:00] instruction_wr2;
 input [07:00] instruction_wr3;
 input [07:00] instruction_wr4;

 input [15:00] instruction_wr1_data; //What to write
 input [15:00] instruction_wr2_data;
 input [15:00] instruction_wr3_data;
 input [15:00] instruction_wr4_data;

 input instruction_wr1_enable; //Should it write
 input instruction_wr2_enable;
 input instruction_wr3_enable;
 input instruction_wr4_enable;

We will be using the same clock throughout all our modules. We can change this clock to
either be one we make when running through Icarus Verilog or to have it be bound to a clock
generator on the FPGA.

Also for our instruction memory we will have 4 reads and 4 writes. However we will only be
using one read for now.

We now need to actually make the memory block. We want ours to be quite small for now, and
has to be only 16 bits long, as this is the size of the smallest instructions.

 reg [15:00] instruction_memory [128:00];

To read a register you set instruction_rd the location you want to read, the corresponding
instruction_rd_out output will then tell you what is in that location.

 // Read logic //
 // This is combinatorial, it happens automatically

 assign instruction_rd1_out = instruction_memory[instruction_rd1];
 assign instruction_rd2_out = instruction_memory[instruction_rd2];
 assign instruction_rd3_out = instruction_memory[instruction_rd3];
 assign instruction_rd4_out = instruction_memory[instruction_rd4];

Previously everything has been combinatorial, it just happens. But for our write we want it to
happen on the clock edge, so it is sequential.

We only want to write to the designated location if it has been enabled. We also want to have
a reset condition in here so we can load a program in from a file.

18 Copyright © 2015 Embecosm Limited

 always @(posedge clock or posedge reset) begin
 // this is sequential, it will only happen on the clock or reset

 if (reset == 1) begin
 $readmemb("instructionmemory.list", instruction_memory);
 end

 else begin

 if (instruction_wr1_enable == 1) begin
 instruction_memory[instruction_wr1] = instruction_wr1_data;
 end

 if (instruction_wr2_enable == 1) begin
 instruction_memory[instruction_wr2] = instruction_wr2_data;
 end

 if (instruction_wr3_enable == 1) begin
 instruction_memory[instruction_wr3] = instruction_wr3_data;
 end

 if (instruction_wr4_enable == 1) begin
 instruction_memory[instruction_wr4] = instruction_wr4_data;
 end
 end
 end

On our reset we set all the value in instruction_memory to those in instructionmemory.list.
The list is a separate file that we keep in the same directory. We change this file to be able
to add in instructions for our processor.

Note
Make sure to remember the endmodule.

6.2. Register
The Register module looks very similar however there are only five ports: 2 write, 3 read. The
size is a lot smaller, as the register bank is much smaller than the instruction memory.

 reg [15:00] register [31:00];

Note
You can change any of these sizes, but make sure that you are able to access all
of them.

Similarly we also read an initial state from a file on reset.

 if (reset) begin // Reset all Registers
 $readmemb("register.list", register);

19 Copyright © 2015 Embecosm Limited

6.3. Data Memory
The Data memory is the smallest (in terms of width). It is instead 8 bits wide and can be up to
65,535 items deep (as that's the biggest value you can give with the 16 bits), though we can
give it any size we want up to this value.

 reg [07:00] data_memory [127:00];

Make sure to declare all the inputs and outputs you need at the right size. This will be very
similar to the instruction memory above.

6.4. List
We are resetting our memories by reading from a list file. To make these, open your text editor
and create the appropriate amount of lines of binary in the format:

0000_0000_0000_0000

Note
Make sure to save into the same directory as the Verilog files.

Remember for all the commands you want nothing to happen on you need to use a NOP no
operation which is different to leaving sixteen zeros (For AAP at least).

6.5. Adding to testbench
Now we can add the memories to the test bench so they can be accessed by other modules.

You only need to define wires that are shared across modules in the test bench, so we do not
need to make another data_memory register.

Note
Remember to add the includes to the test bench file.

Also, like the decoder_test, we need to make memory_tests. We can simply copy over the start
to the modules including the bracketed inputs and outputs and add a copy of the module
name with _test appended to the end.

 TheInstructionMemory TheInstructionMemory_test
 (
 clock,
 reset,
 instruction_rd1,
 instruction_rd2,
 instruction_rd3,
 instruction_rd4,
 instruction_wr1,
 instruction_wr2,
 instruction_wr3,
 instruction_wr4,
 instruction_wr1_data,

20 Copyright © 2015 Embecosm Limited

 instruction_wr2_data,
 instruction_wr3_data,
 instruction_wr4_data,
 instruction_wr1_enable,
 instruction_wr2_enable,
 instruction_wr3_enable,
 instruction_wr4_enable,
 instruction_rd1_out,
 instruction_rd2_out,
 instruction_rd3_out,
 instruction_rd4_out
);

21 Copyright © 2015 Embecosm Limited

Chapter 7. Our Fetch and Program Counter
Now we have an instruction memory, we can make a fetch unit and program counter that
will be able to read from instruction memory and output a new instruction to the decode unit
each clock cycle.

module fetch(clock,
 reset,
 instruction_rd1,
 instruction_rd1_out,
 fetchoutput,
);

 output [19:00] instruction_rd1;
 output [31:00] fetchoutput;

 input clock;
 input reset;
 input [15:00] instruction_rd1_out;

 wire clock;
 wire reset;

 wire [31:00] fetchoutput;

 reg [15:00] fetch1;
 reg [15:00] fetch2;

 wire [15:00] instruction_rd1_out;
 wire [19:00] instruction_rd1;

We hook up the fetch module to the instruction read and read out ports.

Because of the way we handle 32 bit instructions we effectively have two short instructions
in the fetchoutput, we call these fetch1 and fetch2. We want fetch1 to always be the top 16
bits and fetch2 to be the lower 16.

 assign fetchoutput [31:16] = fetch1;
 assign fetchoutput [15:00] = fetch2;

Also we always want to set the place in instruction memory we are reading from to the value
of the program counter.

 assign instruction_rd1 = programcounter;

We then make the program counter increment on the clock, at the same time we want fetch
1 to become fetch 2 and fetch 2 to become the new instruction.

22 Copyright © 2015 Embecosm Limited

 always @(posedge clock) begin
 if (reset == 1) begin
 programcounter = 0;
 end
 else begin
 programcounter = programcounter + 1;
 fetch1 = fetch2;
 fetch2[07:00] = instruction_rd1_out[15:08];
 fetch2[15:08] = instruction_rd1_out[07:00];
 end
 end

You may be wondering why fetch 2 is assigned in 2 parts, this is because of a the endianness
of instructions as generated by the AAP compiler.

7.1. Flush
A problem with our current fetch unit is that if we encounter a 32 bit instruction it will execute,
but it will also send the bottom half of the instruction as a 16 bit instruction. We need to make
a flush signal that it will stop this from executing.

We need to add flush as an input for our fetch module. Then we add a small chunk of code
to the always at clock part of our module:

 if (flush == 1) begin
 fetch1 = 0000000000000001; // this is a NOP no operation instruction
 end

Now our decoder will need to have flush as an output. We assign flush to output the bit_check
value inside the decode module we defined earlier.

 assign flush = bit_check;

7.2. Adding to testbench
Now we can add our fetch module to the test bench so that we can see it passing data to the
decode we added earlier.

Similarly with the memory we make sure we have all the inputs and outputs of fetch as wires
in the test bench, we make sure to `include the fetch unit at the top.

23 Copyright © 2015 Embecosm Limited

Chapter 8. Our Execution
I feel like this chapter is also poorly named, probably Waterstone™'s Young Adult Horror
Fantasy Book of the Year 2009.

We now know what needs to happen for each operation and we also have something that will
tell us what the operation number is from an instruction (thanks to Decode). We also have
all the memories prepared that execute can read and write from and to, so we are ready to
make an execution module!

This module will have lots of ports as it has to be fully connected to both the Data memory
and the registers. It must also receive all parts of the decoder. We must also be able to see the
current program counter, the clock and reset.

Once you have all the appropriate inputs, outputs, wires and regs, you can start on the actual
operations of your very own processor.

Always on the clock we want to make sure that nothing is written without our command, so
we set all enables to 0. We will also preemptively assign some registers reads, so we don't have
to do it individually for all 50+ commands, though you can if you would like to.

 reg_wr1_enable = 0;
 reg_wr2_enable = 0;
 data_wr1_enable = 0;
 data_wr2_enable = 0;
 data_wr3_enable = 0;
 data_wr4_enable = 0;
 reg_rd1 = source_1;
 reg_rd2 = source_2;
 reg_rd3 = destination;

Now all we need are the commands

8.1. NOP commands
For now we will barely concern ourselves with NOP, as we shall come back later when there
is more infrastructure.

 if (operationnumber == 0) begin //no operation
 // Do nothing...
 end

8.2. Unsigned add
We shall go through a few of the basic commands.

For the add command, we need to add both sources we are given and write them into the
destination.

 if (operationnumber == 1) begin //unsigned add
 reg_wr1 = destination;

24 Copyright © 2015 Embecosm Limited

 reg_wr1_data = reg_rd1_out + reg_rd2_out;
 reg_wr1_enable = 1;
 end

We make sure to make enable the write, otherwise it will never save into the registers, so we
can't use the result later.

Note
We are using the rd_out wires that we assigned earlier.

8.3. Bitwise AND
It's very similar to the add, we just need to use a new operand.

 reg_wr1_data = reg_rd1_out & reg_rd2_out;

Instead of the +literal> we used for the addition we are using a & which is the symbol for
bitwise AND.

8.4. Arithmetic shift right
This again is very similar, we just need to find the appropriate operand to use.

 reg_wr1_data = reg_rd1_out >>> reg_rd2_out;

We are arithmetically shifting the value of source one to the right by the value of source 2,
and depositing in the destination register provided.

8.5. Move register to register
We are simply putting the value of one register into another register.

 reg_wr1 = destination;
 reg_wr1_data = reg_rd1_out;

We do not have to empty the original register. Neither do we have to use the second source,
in fact source 2 is probably set to zero.

8.6. Unsigned add immediate
So far we have been using the value of a register, now instead of being given an address we
simply use whatever we are given.

 reg_wr1_data = reg_rd1_out + unsigned_1;

8.7. Logical shift left immediate
A logical shift uses another different operand

 reg_wr1_data = reg_rd1_out << unsigned_1;

25 Copyright © 2015 Embecosm Limited

To get a logical shift right, you make the the little arrows point the other direction.

8.8. Indexed load byte
Because data memory is only a 8 bits wide, we have two different indexed commands. A load
byte is very simple, we just load one value from data memory into the register given.

We are given the location of the place in data memory by the value of a register that is given
to us.

 reg_wr1 = destination;
 data_rd1 = (reg_rd1_out + unsigned_1);
 reg_wr1_data[07:00] = data_rd1_out[07:00];
 reg_wr1_enable = 1;

8.9. Indexed load word
Similar to the previous however, we now want to load two values into our register. We need to
load two separate data bytes and load them one on top of the other.

 data_rd1 = (reg_rd1_out + unsigned_1);
 data_rd2 = (reg_rd1_out + unsigned_1 + 1);
 reg_wr1_data[07:00] = data_rd1_out;
 reg_wr1_data[15:08] = data_rd2_out;
 reg_wr1_enable = 1;

We also have several similar commands with a postincrement or predecrement. To find where
to read we look at the register. These instructions are useful for loops, so if we decremented this
register, the next time we do the command we are storing or loading a different word or byte.
Therefore for these instructions, we simply write to the register whatever value it had plus or
minus, 1 (for a byte) or 2 (for a word), as those are how many bytes from data memory we use.

8.10. Carry bit
So lets say that we add two of our 16 bit registers together, but both of them are 32768 (the
16th bit as 1) when they add together they would equal a number that cannot be represented
in the 16 bit register. Therefore we need a carry bit to hold this 17th bit in case we need it
later. We add the two numbers and the carry bit.

An add with carry is only different from a normal add in that it uses the carry from a previous
operation. Therefore we shall need to use the super_duper.

 if (operationnumber == 1) begin //unsigned add
 if (super_duper_a == 1) begin //unsigned add with carry ??
 reg_wr1 = destination;
 carryreg = reg_rd1_out + reg_rd2_out + carrybit;
 reg_wr1_data = carryreg[15:00];
 carrybit_wr = carryreg[16];
 reg_wr1_enable = 1;
 carrybit_wr_enable = 1;
 end
 else begin

26 Copyright © 2015 Embecosm Limited

 reg_wr1 = destination;
 reg_wr1_data = reg_rd1_out + reg_rd2_out;
 reg_wr1_enable = 1;
 end
 end

We check super_duper after the operation number, and if it is set, then we use the carry bit.
As carry bit is basically the 17th bit, so we need a register that is 17 bits wide to do operations.
So we quickly make another reg like this called carryreg. We also need to make a single bit
reg called carrybit_wr. Then we add the two values in carryreg, only write the bottom 16 into
a register, and the top bit goes of to carrybit.

We are storing the carrybit exactly like the registers, we want it only on the clock edge if it is
enabled. So we make the carrybit_wr and enable as outputs. Instead of give them their own
module we shall instead add them to the Register File.

 if (carrybit_wr_enable == 1) begin
 carrybit = carrybit_wr;
 end

Note
Remember to get all the correct inputs and outputs, wires and registers. Also to
put them into the module declaration.

Note
The subtract with carry is almost exactly the same, though we minus the carry
bit as well

8.11. Bitwise exclusive or immediate
Another occasion when we need to use super duper, though in this operation not all 7 bits we
normally check with for super_duper are left free, only the 10th bit is. Therefore we will use
super_duper_b , our super duper especially for bitwise immediates.

 if (operationnumber == 5) begin //bitwise exclusive OR
 if (super_duper_b == 1) begin //bitwise exclusive OR immediate
 reg_wr1 = destination;
 reg_wr1_data = reg_rd1_out ^ unsigned_5;
 reg_wr1_enable = 1;
 end
 else begin
 reg_wr1 = destination;
 reg_wr1_data = reg_rd1_out ^ reg_rd2_out;
 reg_wr1_enable = 1;
 end
 end

8.12. Relative branch
This is a command which needs to tell fetch unit to modify the value of the program counter.
To do this we will need to add more logic in our fetch unit.

27 Copyright © 2015 Embecosm Limited

But first we can write the logic for the command, as we know what we want the various enable
signals to be.

 if (operationnumber == 32) begin //relative branch
 pcchange = signed_1;
 pcjumpenable = 1;
 end

We need to make a register for pcchange and pcjumpenable, though this is more than a bit
long as we will use it for all the different jumps, much like the operationnumber value we use
in execute.

We now need to add these as inputs in our fetch. Then we can make it jump by pcchange if
pcjumpenable is equal to one.

 always @(posedge clock) begin
 if (reset == 1) begin
 programcounter = 0;
 end

 else begin
 if (pcjumpenable == 1) begin
 // Relative Branch
 if (programcounter == previous_programcounter + pcchange -1) begin
 fetch1 = fetch2;
 fetch2[07:00] = instruction_rd1_out[15:08];
 fetch2[15:08] = instruction_rd1_out[07:00];
 end
 else begin
 programcounter = programcounter + pcchange - 1;
 fetch1 = 0000000000000001;
 fetch2 = 0000000000000001;
 end
 end
 if (pcjmupenable = 0)
 programcounter = programcounter + 1;
 fetch1 = fetch2;
 fetch2[07:00] = instruction_rd1_out[15:08];
 fetch2[15:08] = instruction_rd1_out[07:00];
 end
 if (flush == 1) begin
 fetch1 = 0000000000000001;
 end
 end
 end

So if jump enable is equal to one we will make the program counter become program counter
plus pcchange, keeping in mind we are one ahead of the current value as we have two
instructions in fetchoutput. However if we have already jumped then we just get a new
instruction.

28 Copyright © 2015 Embecosm Limited

Our normal increment of programcounter now occurs if pcjumpenable is equal to 0.

You should encounter a relative branch that requires you to check signed values, the syntax
for checking signed greater than goes like this:

 if ($signed(source_1) > $signed(source_2)) begin

8.13. Absolute Jump
Instead of jumping by adding something to the existing program counter, we go directly to
that something. For this we will use pclocation.

 if (operationnumber == 40) begin //absolute jump
 reg_rd1 = destination;
 pclocation = reg_rd1_out;
 pcjumpenable = 2;
 end

Now we set pcjumpenable to 2. So we need to make an if statement to handle this case in
the fetch module.

 if (pcjumpenable == 2) begin //Absolute Jump
 if (programcounter == pclocation) begin
 fetch1 = 0;
 fetch2[07:00] = instruction_rd1_out[15:08];
 fetch2[15:08] = instruction_rd1_out[07:00];
 end
 else begin
 programcounter = pclocation;
 fetch1 = 0000000000000001;
 fetch2 = 0000000000000001;
 end
 end

We make programcounter equal to pclocation if we get the signal, else if it is already we start
to load a new instruction.

8.14. … and link
For the two jump commands there is a variation with a link, this is basically the same but it
also stores the value of the next programcounter into a register given.

 if (operationnumber == 41) begin //absolute jump and link
 reg_rd1 = destination;
 pclocation = reg_rd1_out;
 pcjumpenable = 2;
 reg_wr1 = source_1;
 reg_wr1_data = programcounter;
 reg_wr1_enable = 1;
 end

29 Copyright © 2015 Embecosm Limited

It is exactly the same for all of the other links. No references to the Legend of Zelda© games
yet…

8.15. Jump long
The last variation of the jump command, is a jump long. This is another use of super_duper,
though this time you will have to go and add a super duper to all the different absolute jumps.

 if (operationnumber == 40) begin //absolute jump
 if (super_duper_a == 1) begin //absolute jump long
 pcjumpenable = 2;
 reg_rd1 = destination;
 reg_rd2 = destination + 1;
 pclocation[15:00] = reg_rd1_out;
 pclocation[31:16] = reg_rd2_out;
 end
 else begin
 reg_rd1 = destination;
 pclocation = reg_rd1_out;
 pcjumpenable = 2;
 end
 end

A jump long uses two different registers to get the value of where to jump to.

30 Copyright © 2015 Embecosm Limited

Chapter 9. FPGA
Now we have a processor that we can simulate, what do we do next? Now you can put it onto
an FPGA.

Though to put it on to an FPGA we will need to change a few things first.

9.1. Resets
Currently our reset is reading from a file and filling the memory with whatever is in the file.
We can't keep a file on our FPGA, so we need a new way of resetting the processor. What we
do is create a loop, so that it keeps on setting places in our memory to zero, or any other
number we might like.

 for (dataloopcount = 0;
 dataloopcount < 128;
 dataloopcount = dataloopcount +1)
 begin
 data_memory[dataloopcount] = 0;
 end

This starts on reset, the loopcount becomes zero, it increments until it is 128, all the time it
is setting that place in the memory to 0.

9.2. There is something in the air…
Call out the Instigator. There needs to be some Verilog similar to the test bench that will start
all our modules.

We need to have all the wires and registers that will be used labeled in this file. To get my
version to work on the FPGA I used a file from the Chip Hack repository to have all the GPIO
pins allocated properly.

 // Instantiate the instruction memory
 TheInstructionMemory i_TheInstructionMemory
 (
 .clock (CLOCK_50),
 .reset (reset),
 .instruction_rd1 (instruction_rd1),
 .instruction_wr1 (instruction_wr1),
 .instruction_wr1_data (instruction_wr1_data),
 .instruction_wr1_enable (instruction_wr1_enable),
 .instruction_rd1_out (instruction_rd1_out),
 .instruction_rd2 (instruction_rd2),
 .instruction_wr2 (instruction_wr2),
 .instruction_wr2_data (instruction_wr2_data),
 .instruction_wr2_enable (instruction_wr2_enable),
 .instruction_rd2_out (instruction_rd2_out)
);

31 Copyright © 2015 Embecosm Limited

Note
It is very similar to the test bench we used earlier.

9.3. UART
After all the previous steps you should be able to get your processor running on the FPGA.
Though there is no way of giving it commands or seeing if it following these commands.

Therefore we shall alter a UART module so that we can send commands and receive back data.

9.3.1. UART clock
The UART needs to have a slower clock, so that it is able to communicate, we need to slow the
clock down. We want to transmit at 300 baud, we currently have a 50MHz clock.

Our new UART module needs to be able to see the current clock, have a reg for the UART
clock and a 17 bit register for our clock divider counter. Our divider needs to count 83333, as
50000000 divided by 300 (the rate we want) and then divided by 2 (as it needs to go both up
and down), at which point uart_clock will become whatever uart_clock isn't.

 // UART transmit at 300 baud from 50MHz clock
 reg [16:0] clock_divider_counter;
 reg uart_clock;

 // Clock counter
 always @(posedge clock) begin
 if (reset == 1'b1)
 clock_divider_counter = 0;
 else if (clock_divider_counter == 83333)
 clock_divider_counter = 0;
 else
 clock_divider_counter = clock_divider_counter + 1;
 // Otherwise increment the counter
 end

 // Generate a clock (toggle this register)
 always @(posedge clock) begin
 if (reset == 1'b1)
 uart_clock <= 0;
 else if (clock_divider_counter == 83333)
 uart_clock = ~uart_clock;
 end

9.3.2. Transmit
To make our transmitter easier to comprehend we shall design it as a state machine. State
machines are where there are several states, each has their own commands, and depending
on what happens it sends it to another state.

Firstly we need to start our state machine, by ensuring there are some reset conditions

 always @(posedge uart_clock or posedge reset) begin
 if (reset) begin
 // Reset to the "IDLE" state

32 Copyright © 2015 Embecosm Limited

 transmit_state <= 0;
 // The UART line is set to '1' when idle, or reset
 UART_TX = 1;
 end

 else begin
 case (transmit_state)

In our first state we need to listen for when to transmit, we will put in when write enable move
on to the next state, and then if it is already transmitting data. Later we shall tell it to transmit
several bytes at a time so we will have a transmit data state which if it is not zero is in the
process of transmitting

 0:
 begin
 if (transmit_data_state == 0)
 // Waiting to be allowed to transmit
 if (write_enable == 1)
 transmit_state = 1;
 if (transmit_data_state !== 0)
 // If transmitting stuff carry on
 transmit_state = 1;
 end

To receive you have a wire that is normally high (1) and when there is a byte of data that is
about to be received it goes low, to inform you that the next 8 bits is for you to read.

 1:
 begin
 UART_TX = 0; //bit goes down
 transmit_state = 2;
 end

Then we start to transmit all 8 bits of the transmit data. You could make all of these stages
individually transmit each bit, but its neater to have it like this:

 2,3,4,5,6,7,8,9:
 begin
 UART_TX = transmit_data[transmit_state - 2];
 // Transmit all 8 bits of the ASCII code
 transmit_state = transmit_state + 1;
 end

Then the transmit bit needs to be set high again, ready to transmit again.

 10:
 begin
 transmit_state = 0;
 UART_TX = 1;

33 Copyright © 2015 Embecosm Limited

 if (transmit_data_state == transmit_data_state_max)
 // Transmitted everything?
 transmit_data_state = 0;
 else
 // increment counter
 transmit_data_state = transmit_data_state + 1;

 end

Inside case 10 there is also some logic that checks to see is the maximum state has been
reached, as later on we will set this to the number of ASCII codes we want to send.

Right at the end we add a default, in case this code ever breaks it will automatically reset
back to the beginning.

 default:
 begin
 transmit_state = 0;
 end

Note
To end a case statement we simply use endcase.

Outside of the case statement we set transmit data to equal the the relevant element of the
transmit storage:

 always @(posedge uart_clock) begin
 // The code to Transmit
 transmit_data = transmit_storage[transmit_data_state];
 end

9.3.3. Receive
We now need to be able to receive the characters we type at our processor from out desktops.

Similarly we start a new case.

 always @(posedge uart_clock or posedge reset) begin // Receive
 if (reset) begin
 // Reset to the "IDLE" state
 recieve_state <= 0;
 saved_counter = 0;
 end
 else begin
 case (recieve_state)

 0:
 begin
 write_enable = 0; // Start transmitting
 if (UART_RX == 0) // When bit is set low start to listen

34 Copyright © 2015 Embecosm Limited

 recieve_state = 1;

 end

Once received we need to save this into a register. We will put what is being received into a
register called recieved.

 1,2,3,4,5,6,7,8:
 begin
 recieved[recieve_state - 1] = UART_RX;
 recieve_state <= recieve_state + 1;
 end

Because we want to be able to sent multiple characters at it we need to save recieved into an
array of memory, I call mine saved_memory.

 9:
 begin
 recieve_state <= 0;
 amountrecieved = amountrecieved + 1;
 write_enable = 1;
 saved_memory[saved_counter] = recieved;
 if (saved_memory[saved_counter] == 13) // if enter
 saved_counter <= 0; // reset
 else
 saved_counter <= saved_counter + 1; // else increment
 end

We want to commence our commands on enter, so on enter, which is ASCII 13 we start saving
our received into 0 again, else the place we save will increment.

9.3.4. UART commands
Now we can write all the commands that we want to be able to do from the UART. We want
to be able to read and write to all three of the registers.

 always @(posedge uart_clock) begin
 reg_wr3_enable = 0;
 data_wr3_enable = 0;
 instruction_wr2_enable = 0;
 uart_step_enable = 0;
 uart_stop = 0;
 uart_continue = 0;
 uart_reset = 0;

 if (recieved == 13) begin

To begin with we make sure no writes are enabled. We want to check for the commands only
once you have entered all of your data and then pressed enter, so we only check if the latest
received is the ASCII code for enter.

35 Copyright © 2015 Embecosm Limited

Note
You will need to add all the appropriate inputs and outputs for the reading and
writing to all of the memories.

To read from a Register we want to type G followed by a space then the location in binary.
So we check that the first thing in saved memory is a G and then set the correct reg_rd bits
to the saved memory

 if (saved_memory[0] == 71) begin // Read a register

 transmit_data_state_max = 16;

 reg_rd3[00] = saved_memory[07] - 48; //Where to read from
 reg_rd3[01] = saved_memory[06] - 48;
 reg_rd3[02] = saved_memory[05] - 48;
 reg_rd3[03] = saved_memory[04] - 48;
 reg_rd3[04] = saved_memory[03] - 48;
 reg_rd3[05] = saved_memory[02] - 48;

The transmit_data_state_max is set to how many characters we want to transmit.

We are subtracting 48 as we will receive 0 & 1 as ASCII codes and 48 equals zero. So we will
get either 1 or 0.

We then need to set the transmit storage to equal what comes out of the reg.

 transmit_storage[00] = 32; // Space
 transmit_storage[01] = reg_rd3_out[15] + 48; // Whatever the reg was
 transmit_storage[02] = reg_rd3_out[14] + 48;
 transmit_storage[03] = reg_rd3_out[13] + 48;
 transmit_storage[04] = reg_rd3_out[12] + 48;
 transmit_storage[05] = reg_rd3_out[11] + 48;
 transmit_storage[06] = reg_rd3_out[10] + 48;
 transmit_storage[07] = reg_rd3_out[09] + 48;
 transmit_storage[08] = reg_rd3_out[08] + 48;
 transmit_storage[09] = reg_rd3_out[07] + 48;
 transmit_storage[10] = reg_rd3_out[06] + 48;
 transmit_storage[11] = reg_rd3_out[05] + 48;
 transmit_storage[12] = reg_rd3_out[04] + 48;
 transmit_storage[13] = reg_rd3_out[03] + 48;
 transmit_storage[14] = reg_rd3_out[02] + 48;
 transmit_storage[15] = reg_rd3_out[01] + 48;
 transmit_storage[16] = reg_rd3_out[00] + 48;

 end

You do exactly the same to read from every other memory.

To write to the Data memory we want to be able to type "E" followed by the location in binary,
then by then value to write in binary.

 if (saved_memory[0] == 69) begin // Write data memory

36 Copyright © 2015 Embecosm Limited

 data_wr3_enable = 1;

 data_wr3[00] = saved_memory[07] - 48;
 data_wr3[01] = saved_memory[06] - 48;
 data_wr3[02] = saved_memory[05] - 48;
 data_wr3[03] = saved_memory[04] - 48;
 data_wr3[04] = saved_memory[03] - 48;
 data_wr3[05] = saved_memory[02] - 48;

 data_wr3_data[00] = saved_memory[16] - 48;
 data_wr3_data[01] = saved_memory[15] - 48;
 data_wr3_data[02] = saved_memory[14] - 48;
 data_wr3_data[03] = saved_memory[13] - 48;
 data_wr3_data[04] = saved_memory[12] - 48;
 data_wr3_data[05] = saved_memory[11] - 48;
 data_wr3_data[06] = saved_memory[10] - 48;
 data_wr3_data[07] = saved_memory[09] - 48;

 end

Note
You have to have the Data inputs in your UART module for this to work.

Then if the last character is not enter we want to transmit what has been received, so we can
get feedback and don't have to type blind.

 else begin // Transmit what is being typed
 transmit_data_state_max = 0;
 transmit_storage[0] = recieved;
 end

9.3.5. Congratulations
Congratulations! You should now have a working processor, that can execute a program you
have written.

37 Copyright © 2015 Embecosm Limited

References
[1] Elementary OS A Simple Linux distribution https://elementary.io/.

[2] Simon Lane CPU https://youtu.be/SoGzuWYYFkQ?t=1m11s.

[3] Not a Quantum Processor guide… Not the guide you are looking for http://i.imgur.com/
7Y1giuy.jpg.

https://elementary.io/
https://youtu.be/SoGzuWYYFkQ?t=1m11s
http://i.imgur.com/7Y1giuy.jpg
http://i.imgur.com/7Y1giuy.jpg

	AAP: An Altruistic Processor
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites

	Chapter 2. Processors?
	2.1. But Dan, what is a processor?
	2.2. Well Dan, my computer actually has 4 of these GHz
	2.3. Well… what's inside a processor?
	2.3.1. Fetch
	2.3.2. Decoder
	2.3.3. Execute

	2.4. OK, but what's so important about former Lieutenant-Governors of Manitoba born in 1938?

	Chapter 3. The Requirements of Our Processor
	3.1. Memories
	3.1.1. Instruction Memory
	3.1.2. Data Memory
	3.1.3. Registers

	3.2. Instructions
	3.2.1. No operation
	3.2.2. Unsigned add
	3.2.3. Unsigned subtract
	3.2.4. Bitwise AND
	3.2.5. Bitwise AND immediate
	3.2.6. Bitwise OR
	3.2.7. Bitwise OR immediate
	3.2.8. Bitwise exclusive OR
	3.2.9. Bitwise exclusive OR immediate
	3.2.10. Logical shift left
	3.2.11. Logical shift right
	3.2.12. Arithmetic shift right
	3.2.13. Move register to register
	3.2.14. Unsigned add immediate
	3.2.15. Unsigned subtract immediate
	3.2.16. Arithmetic shift right by immediate
	3.2.17. Logical shift left by immediate
	3.2.18. Logical shift right by immediate
	3.2.19. Move immediate to register
	3.2.20. Move immediate to register
	3.2.21. Indexed load byte
	3.2.22. Indexed load word
	3.2.23. Indexed load byte with postincrement
	3.2.24. Indexed load word with postincrement
	3.2.25. Indexed load byte with predecrement
	3.2.26. Indexed load word with postincrement
	3.2.27. Indexed store byte
	3.2.28. Indexed store word
	3.2.29. Indexed store byte with postincrement
	3.2.30. Indexed store word with postincrement
	3.2.31. Indexed store byte with predecrement
	3.2.32. Indexed store word with predecrement
	3.2.33. Relative branch
	3.2.34. Relative branch and link
	3.2.35. Relative branch if equal
	3.2.36. Relative branch if not equal
	3.2.37. Relative branch if signed less than
	3.2.38. Relative branch if signed greater than
	3.2.39. Relative branch if unsigned less than
	3.2.40. Relative branch if unsigned greater than
	3.2.41. Absolute jump
	3.2.42. Absolute jump and link
	3.2.43. Absolute jump if equal
	3.2.44. Absolute jump if not equal
	3.2.45. Absolute jump if signed less than
	3.2.46. Absolute jump if signed greater than
	3.2.47. Absolute jump if unsigned less than
	3.2.48. Absolute jump if unsigned greater than

	Chapter 4. Our Design
	4.1. Fetch
	4.2. Decode
	4.3. Execute

	Chapter 5. Decoder
	5.1. Why do we Decode Mr Wayne?
	5.2. So what is Useful for our Execute?
	5.3. Our Decoder
	5.4. Debugging Verilog
	5.4.1. Test Bench

	Chapter 6. Our Memories
	6.1. Instruction Memory
	6.2. Register
	6.3. Data Memory
	6.4. List
	6.5. Adding to testbench

	Chapter 7. Our Fetch and Program Counter
	7.1. Flush
	7.2. Adding to testbench

	Chapter 8. Our Execution
	8.1. NOP commands
	8.2. Unsigned add
	8.3. Bitwise AND
	8.4. Arithmetic shift right
	8.5. Move register to register
	8.6. Unsigned add immediate
	8.7. Logical shift left immediate
	8.8. Indexed load byte
	8.9. Indexed load word
	8.10. Carry bit
	8.11. Bitwise exclusive or immediate
	8.12. Relative branch
	8.13. Absolute Jump
	8.14. … and link
	8.15. Jump long

	Chapter 9. FPGA
	9.1. Resets
	9.2. There is something in the air…
	9.3. UART
	9.3.1. UART clock
	9.3.2. Transmit
	9.3.3. Receive
	9.3.4. UART commands
	9.3.5. Congratulations

	References

