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Superoptimization

Feasibility Study by Embecosm Limited, supported by Innovate UK

Superoptimization is the process of finding the optimal instruction sequence for a given
section of code. This contrast with the traditional process of compilation, which optimizes
code but does not ensure optimality.

This  report  explores the  different  types  of  superoptimizer,  and  how  they  could  be
implemented in modern technologies.

This work was led by James Pallister, Research Engineer at Embecosm and supported by
Innovate UK under their Technology Inspired Feasibility Studies initiative.

For further information about this work, please contact Dr Jeremy Bennett, Chief Executive,
jeremy.bennett@embecosm.com.

1 Introduction

Superoptimization is an idea which produces perfectly optimal code, in place of the code we
currently have generated by compilers. This is typically done via a brute-force search of
every possible instruction sequence, checking whether it performs the desired actions and
accepting the sequence if it is the optimal one.

The  problem is  clearly  very  difficult,  exploding  in  size  as  the  length  of  the  instruction
sequence increases. However, superoptimization gaining traction as a method of optimizing
programs. In this feasibility study we hope to find which techniques are extensible enough
to bring out of the academic community to be using in a commercial setting. This means
that the superoptimizer needs to be able to handle all the corner cases that may arise in
production code. If it turns out that superoptimization is not currently feasibly, by the end
of the project we will have a research roadmap describing what will need to be done next.

Superoptimization was first conceived by Henry Massalin[1], where a brute-force search was
conducted through the arithmetic instructions of the Motorola 68000. The example given in
the original paper is given below.

The function on the left is compiled, giving the piece of code on the right, with multiple
branches  and  comparisons.  This  could  perhaps  be  reduced  by  an  expert  assembly
programmer, but was generally accepted as close to optimal. When the superoptimizer was
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run on this program, a much shorter version was found - 4 instructions long and with no
branching.

 On the left is the instruction sequence found by the superoptimizer (Motorola 68000), with
the definitions of the instructions on the far right. In the middle are three cases, computed
step by step to illustrate how the code sequence works. How to instructions compute their
result  is  not  obvious  exploiting  the  carry  flag  ('x')  in  combination  with  arithmetic
instructions.
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Analysis

2 Types of superoptimizer

The most obvious choice for a superoptimizer is a brute force enumeration, simply searching
all possible sequences in cost order until a correct sequence is found. However, there are
other ways of performing the search, and these are also described below.

2.1 Brute force

The most common type of superoptimizer is a brute force optimizer, which enumerates each
instruction sequence in turn, testing each until a correct sequence is found. The order of
this search is important, since to guarantee optimality the sequences must be searched in
cost order. 

The search order is simple for some metrics, such as code size, where in many cases this
corresponds to number of instructions in the sequences. A superoptimizer would enumerate
sequences with one instruction, followed by two instructions, etc.

The  disadvantage  with  this  approach is  the  search space  scales  exponentially  with  the
length of the instructions sequences, making long sequences intractable. The size of the
instruction set also greatly affects the superoptimization potential. This is discussed below
in 3.1 Potential efficiency: Instruction set choice. The exponential growth can be mitigated by
several techniques to remove redundant instruction sequences and incorrect sequences.

2.2 Machine learning

Recently machine learning has been applied to superoptimization to traverse the search
space efficiently, allowing the search to quickly identify efficient instruction sequences [2].
With this approach it is difficult to ensure optimality of the generated sequences, although
the sequences are typically very close to optimal and the method gives good results in a
shorter time frame than any other method.

2.3 Constraint solving

The constraint solving approach to superoptimization uses a solver (typically a SMT solver)
with  a  set  of  equations  to  find  a  efficient  solution.  The  instructions  are  encoded  into
constraints which the solver can interpret, and then the target function is represented using
this  form of  the  instructions.  The  SMT solver  typically  converts  these  constraints  into
boolean equations (a SAT problem), which is given to a SAT solver. A SAT solver then tries to
work out if  a  solution can be found for the equations. If  a solution is found then this
describes the instruction sequence performs the target operation.   An off-the-shelf solver
can then produce a solution [3].

SMT solvers are typically very efficient, containing many heuristics to speed up and guide
the  search.  This  method  allows  the  superoptimizer  to  increase  in  performance  as  the
corresponding solver is developed.

However,  SMT  solvers typically  solve  a  decision  problem,  rather  than  an  optimization
problem, meaning that the problem domain does not simply translate into SMT constraints
– an iterative approach must be taken. This involves asking the solver “Prove there is no
instruction sequence of size N to solve the problem”. The SMT solver will either return a
counter example (the instruction sequence) or inform that the problem cannot be solved
given  the  constraints  [4].  The  parameter  N  can  then  be  increased  until  the  shortest
sequences is found.
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3 Potential efficiency

Currently superoptimization is limited to short sequences of mostly ALU based code, with
some techniques being able to handle memory operations and a few with branches. No
superoptimizer has attempted to create arbitrary control flow.

Superoptimization often finds optimizations where multiple different representations of a
number can be exploited. For example, if the number can be operated on as both bits and
as an arithmetic number, interesting optimizations can often be found. This is also possible
with floating point numbers, although no superoptimizer has attempted this yet.

One thing  a  superoptimizer  can successfully  find is  branch-free  replacements  for  short
sequences of code, allowing (usually) costly branches to be removed [5]. This is focused on
by many of the brute force superoptimizers. However, it is still difficult for superoptimizers
to produce code with branches in them, and even more difficult if loops are considered.

3.1 Instruction set choice

The instruction set chosen as the target for superoptimization has a large effect on the
efficacy of the search – the length of the resulting solution and the time taken to find it.
There are a number of trade-offs to consider when choosing the instruction set, or subset of
the instruction set to superoptimize. 

The number of instructions in the instruction set is the predominant factor in whether the
superoptimizer will find a solution or not, since longer sequences can typically solve more
complex  problems.  However,  if  each  instruction  only  performs  a  'small'  amount  of
computation, then the required result will be need to be longer. This means that the subset
of instructions chosen should be as small as possible, and consist of 'complex' operations.

The notion of operation 'complexity' is necessarily vague, since there is not a good metric to
describe the amount of computation an operation requires.

The following graphs shows the superoptimization results for several architectures using the
GNU superoptimizer. This includes the inbuilt superoptimization target functions (134 
functions), as well as the superoptimization benchmarks given in the following section (25 
functions). Each stacked bar shows the number of target functions that were able to be 
superoptimized, with the resulting number of instructions shown in colour.

The black line indicates the average length of the found solution for that architecture.
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Overall  this  graph gives an idea of  the complexity  of  the instruction set  (or  the subset
implemented  in  GSO)  for  each  architecture.  AVR  has longer  instruction  sequences  on
average, due to it being the only 8-bit architecture and by far the simplest.

An important trend to notice in the graph is that architectures on the left (lower average
sequence length) typically have 3 operand instructions, whereas many on the right are 2
operand  (implied  destination).  By  not  modifying  one  of  the  source  registers  in  some
operations,  the superoptimizer  can make reuse of  this  source again if  necessary.  If  the
instruction  set  only  supports  2  operand addressing  then  the  superoptimizer  must  find
another way of  preserving the source register,  typically  by inserting an additional  move
instruction, thus increasing the sequence size. 

The  average  sequence length  is  not  a  measure  of  how good the  instruction set  –  it  is
resultant  from  design  choices  made  when  creating  the  instruction  set.  The  choice  of
instructions in the AVR instruction set means that the processor have a smaller silicon area
than the other processors.

The  importance  of  moving  register  contents  around  results  in  instruction  sets  with  a
conditional move performing well. The alpha architecture, and PA-RISC (hppa) both have
some support for either conditional instructions or conditional moves.

The  following  graphs  shows  a  breakdown  of  the  superoptimizer  benchmarks  for  each
architecture.  Only the 25 superoptimizer benchmarks are displayed, since it is expected
these  are  a  better  indicator  for  the  overall  performance than the  full  set  (GSO's  initial
functions are heavily biased towards if-conversion type optimizations). This highlights the
length of the individual result for each superoptimizer trial.
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As with the previous graph, there is a general increase in the number of instructions 
required to solve the benchmark, from left to right. From these graphs it would suggest the 
subset of AVR instructions implemented is the least complex, whereas the instructions from
the Alpha instruction set are the most complex.

4 Difficulties

Some constructs and instructions are challenging for a superoptimizer to deal with. These
are listed below.

Memory operations Memory  operations  can  be  challenging,  since  it  represents  a  large
additional state that must be kept track of. This is handled in  [6] by
constraining the amount of memory that can be accessed to 256 bytes,
by only using the last byte of the memory address. This quick test has
aliasing problems in certain cases, which must be checked later with
more extensive verification.

Memory is also problematic in the constraint solving approach, due to
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the large number of constraints it produces – a look up table must be
created with enough entries to store each unique accesses. Each entry is
then compared to the lookup table when a load is performed.

Volatility  must  also  be  considered  when  superoptimizing  memory
accesses. 

Control flow.
Branches

Branches  greatly  widen  the  scope  of  what  the  superoptimizer  can
generate. It is relatively simple to verify whether a section of loop free
code is equivalent to another section of code with a different branching
structure  (i.e.  allowing  branching  input  to  the  superoptimizer).
Generating  branching  output  is  more  challenging  due  to  the  large
number of possibilities.

Control flow.
Loops

Loops are extremely difficult to superoptimize, particularly due to the
problem  of  verifying  loop  equivalence.  Superoptimizing  across  loop
boundaries was shown to be possible in [7], however this kept the same
loop structure.

Large  numbers  of
register combinations

Many  of  the  registers  combinations  are  redundant,  if  some  of  the
registers are orthogonal. For example:

mov r0, r1
add r1, r2, r2

mov r3, r2
add r2, r1, r1

These  two  sequences  are  functionally  equivalent,  apart  from  the
registers the results start and end in.

Floating point Floating point is challenging to superoptimize because it is particularly
difficult to verify if the output sequence is correct. The typical method of
using an SMT solver to prove an instruction sequence's equivalence does
not work for floating point (no available floating point theory).

Precoloured registers Instructions which imply a certain source or destination registers can be
problematic  in  certain  circumstances,  particularly  for  brute-force
superoptimizers.  The  canonical  form  solution  for  a  large  number  of
register  combinations  (given  above)  has  problems  coping  with  this
scenario, since the reduction cannot be applied to these registers. This is
less a problem for converting existing sequences to canonical form but
the difficulties arise when trying to iteratively generate all sequences of
registers  in  canonical  form.  More  research  is  needed  to  efficiently
generate precoloured registers.
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Choice of code to superoptimize

The choice of code to superoptimize has a large impact on the effectiveness of the solution,
and the  time taken to  find it.  A  simple  way to  choose  which areas  of  code  should  be
superoptimized is to profile, and find which regions of code are hot. However, some of these
will not be suitable for superoptimization – this section discusses some of these cases.

5 Memory accesses

If  the  code  frequently  accesses  memory  then  it  is  likely  going  to  be  difficult  for  a
superoptimizer to utilize. Global memory accesses are often required, because it is the data
the code is operating on. Local accesses frequently cannot be removed either, since they
have  dependencies  across  loop  edges,  or  the  computation  of  the  value  is  a  significant
distance from the target region.

The following dataflow DAG shows a basic block that may not be effective to superoptimize.
The green arrows indicate the sequence of memory operations. In this analysis the arrows
are marked conservatively – the volatility is unknown so the order should be preserved.

If an arithmetic intensive portifc13208on of the basic block can be extracted from the rest of
the basic block, then just this section could be considered for superoptimization. This has 
the advantage of cutting out the computation that has few possible gains, and focuses on 
what superoptimizers are typically most performant at.

The basic block below has a highlight region which could be fed through a superoptimizer, 
avoiding the chain of memory accesses on the right.
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6 Target Codes

Superoptimization is not an appropriate technique for optimizing everything – it generally
takes too much time to be used as a generic optimization. However for certain types of code
it can be very beneficial. These are typically libraries which get used in many places, or
applications which will run for a very long time and are heavily dependent on some forms of
compute.  In  particular  for  embedded  systems,  reducing  the  size  of  a  library  is  very
important since space is heavily constrained.

libgcc This is the runtime library that provides various support
functions to applications compiled by GCC. On embedded
processors  which  do  not  support  floating  point,  this
library provides the emulation, as well as other support,
such  as  division  for  processors  without  a  divide
instruction.

As such this library is heavily used in some embedded
applications, and superoptimization could greatly benefit
by reducing the overhead of this library.

compiler-rt This  library is  similar  to  GCC, but is  used with LLVM
instead.

softfloat This  library  emulates  floating  point  instructions  using
integer and bitwise operations, for processors which do
not have a hardware FPU. These functions could be ideal
targets  for  superoptimization,  since  they  are  mostly
computation bound, and not reliant on memory accesses.
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Example code

Henry Massalin first introduced superoptimization with the following example [1]:

int signum(int x)
{
    if(x < 0)
        return -1;
    else if(x > 0)
        return 1;
    else
        return 0;
}

This function was roughly 8 instructions in length when naively compiled, but could be
reduced to 6 instructions by an expert programmer. Massalin's superoptimizer managed to
find the result in 4 instructions:

add.l   d0, d0
subx.l  d1, d1
negx.l  d0
addx.l  d1, d1

7 Superoptimization benchmarks

Several small functions were identified in  [3] as being good targets for superoptimization.
These  were short  functions easy to specify  but had challenging implementations,  many
originating in Hacker's Delight  [8].  The implementations of these programs often rely on
interpreting the values in different representations and operating on them as such, meaning
that it can be difficult for traditional compilers to solve. However, these difficulties make
them tractable with a superoptimizer.

The benchmarks selected by Gulwani et al. are: 

Benchmark Parameters Description

P1 x Clear the least significant bit.

P2 x Check whether x is of the form 2n
−1 .

P3 x Isolate the right most 1-bit.

P4 x Form a mask of set bits from the right most set bit to the least 
significant bit

P5 x Set all from the least significant bit up to the least significant 
set bit.

P6 x Set the least significant 0-bit.

P7 x Isolate the right most 0-bit.

P8 x Form a mast of set bits from the right most cleared bit to the 
least significant bit.

P9 x abs(x).

P10 x, y Test if the number of leading zeroes is the same for x and y.

P11 x, y Test if x has fewer leading zeroes than y.

P12 x, y Test if x has fewer or equal leading zeroes than y.

P13 x The signum function [1].
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P14 x, y Floor of x and y.

P15 x, y Ceil of x and y.

P16 x, y Max of x and y.

P17 x Turn of the right most string of 1-bits.

P18 x Check whether x is a power of two.

P19 x, m, k Exchange two bitfields in x, where m as a mask marking the 
right most field, and k is the number of bits from the start of 
the first bitfield to the start of the second.

E.g. x = 0x00A00B00, m = 0x00000F00, k = 12
           x' = 0x00B00A00

P20 x The next higher unsigned number with the same number of set
bits as x.

P21 x, a, b, c Cycle through a, b and c, returning the next number where x = 
a, b or c.

E.g. x = a, x' = b.
E.g. x = c, x' = a.

P22 x Compute the parity of x.

P23 x Count the number of bits set in x.

P24 x Round x up to the next power of 2.

P25 x, y Compute the high part of the product of x and y.

8 Other superoptimized code

In  addition  to  the  benchmarks  in  the  previous  section,  other  codes  have  been
superoptimized. Integer multiplication by a constant factor has been attempted.

Granlund et al.  [5] used a superoptimizer to remove small branches and common if-then-
else conditions. These were later integrated into GCC peephole pass.
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Superoptimizer designs

This section discusses the design of several superoptimizers, as well as presenting a new
design. These all will require varying amounts of additional research to realise (with brute-
force requiring the least, and constructive requiring the most).

9 Brute force

The GNU Superoptimizer (GSO) uses a dynamic programming approach to achieve efficient
superoptimization.  For  a  sequence of  length N,  it  will  enumerate  the  first  instructions,
computing  the  effect  on  a  test  vector.  It  will  then  recursively  enumerate  sequential
instructions,  passing  the  partial  computed results  to  each  subsequent  instruction.  The
prevents redundant calculation of the results, and quickly prunes sequences which cannot
be correct.

This  method  of  dynamic  programming  results  in  generated  sequences  which  are  in
canonical form – again reducing the search space. However, the same drawbacks occur and
in  this  framework  it  is  difficult  to  implement  instruction  sets  with  implicit  sources  or
destinations. Constraints on registers are also challenging to work with, while also ensuring
that all possible sequences can be explored.

9.1 Design

A similar design to GSO could be taken, while changing the architecture slightly to enable a
wider range of instructions to be easily implemented. This includes modifications to the
method  of  selecting  registers,  to  allow  instructions  with  implicit  destinations  to  be
implemented, and modifications to any flag variable (currently GSO only supports the carry
flag).

The superoptimizer keeps a set of current registers and flags, which are used as a quick test
to exclude incorrect sequences.

Overall the superoptimizer follows a recursive design:

function superopt(current_len, max_len, machine_state, sequence):
    if(current_len > max_len)
        if(machine_state matches target function)
            verify the instruction sequence
        return
    for insn in instructions
        for registers in registers_lists
            execute insn with registers on machine_state
            append insn to sequence
            superopt(current_len+1, max_len, machine_state)

for i = 1 to ...
    superopt(1, i, blank_machine_state, empty_instruction_sequence)

This generates and tests instruction sequences in a iterative deepening depth-first search,
and  reuses  the  values  computed  by  the  instructions.  This  search  choice  is  a  trade-off
between depth-first search and breadth-first search: depth-first is not appropriate since it
does not traverse the sequences in approximate cost order. A naïve breadth-first search
would use a very large amount of memory as the sequence length increased.

9.1.1 Registers

The above algorithm  needs a list  of  all  of  the register  variants  which can go with that
instruction sequence. This can be optimized by iterating through the registers in canonical
form. The following algorithm will iteratively update a list of registers so that they are always
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in canonical form. The algorithm is initially given a list of 0's. The length of this list is equal
to the number of register slots in the instruction sequence.

function iterate_register_list(reg_list, num_registers)
    n = length(reg_list)
    finished = 1
    for i = 0 to n – 1
        if reg_list[i] < max(reg_list[i+1 .. n]) + 1 
                  and reg_list[i] < num_registers
            reg_list[i]++
            finished = 0
            break
        else
            reg_list[i] = 0
    return reg_list, finished

If the algorithm returns with finished set to one, then the algorithm has wrapped around an
the next instruction should be selected. The set of registers should not include slots for
instructions  which  have  an  implicit  register  destination.  For  example,  the  AVR  mul
instruction has two explicit register slots, and two implicit, fixed destinations. In this case
only the explicit register slots will be included in the list.

If the instruction has constraints on the set of registers that can be used in that slot, the
slot should not be included in the iterative canonicalisation, and should be looped over in
brute-force. This is due to the above algorithm not generating the correct results in this case
(see research questions). For example, the AVR ldi instruction cannot use registers r0-r15.

9.1.2 Improvements

There are many ways to reduce the search space, however, the reduction in search space is
a trade off with their implementation efficiency.

Commutativity Some  instructions  have  commutative  operations.  These  can  be
exploited to reduce the search space by only considering one form
of  the  instruction.  Commutativity  also  interacts  with  canonical
form, meaning that the ordering of  the register  slots in can be
important. 

Redundant outputs This  technique  involves  analyzing  the  generated  instruction
sequence for  dependencies  that  would have  been eliminated in
fully optimized code.

The number of registers in use, and used by the input sequence is
known, therefore if the sequence reads from a register that has not
been assigned to yet, it can be excluded. Writes to registers which
are never read from can be removed.

These can be incorporated into the canonical register generator, by
giving it information 

Machine state lookup This exploits the fact that the majority of instruction sequences
are incorrect. The machine state is stored in a hash table, along
with the amount of instructions (or cost) required to compute it.
Each time the superoptimizer is about to recurse, it first checks
whether the current machine state is in the table. If it is, and the
cost to reach that state is higher than that stored in the table,
then  the  resulting  sequence  cannot  possibly  be  optimal  (since
we've previously seen that machine state, and not found a result).
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This  leads  to  3-10x  speed  up  in  certain  circumstances.  This
method needs tuning, since the hashtable lookup can easily slow
the  search  down.  In  particular,  it  is  not  beneficial  to  store  or
lookup the machine state if there is only 1 instruction left in the
current search.

This method essentially removes parts of the search space which
are known to be bad, typically occurring when some instruction
reordering does not affect the output of the sequence. This also
has the effect of  quickly pruning sets of  sequences which have
dead code in them. 

Sometimes  trivial  sequences  of  instructions  produce  the  same
output (e.g. add r0,-1 and sub r0,1) and if these are known to
be incorrect then are excluded by this technique.

Heuristics Some heuristics can be used to change the order of the iterated
instructions. This does not reduce the search space, but may allow
the superoptimizer to find any solution quicker.

9.1.3 Speed or Optimality

There is a certain amount of cross over with the machine learning approach if heuristics are
used to guide the search. In particular a brute force superoptimize has difficulty with the
possible range of constants – there are frequently too many possible constants to use them
all. GSO only uses a small range of constants, removing the guarantee of optimality but
speeding up the search. The set of constants is chosen carefully, based on constants which
appear frequently in code. The graph below shows the frequency of certain constants for a
range of benchmarks.
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The graph shows spikes around the powers-of-two, and powers-of-two minus 1. The 
superoptimizer could bias the search by preferring power-of-two constants, and then trying 
other constants after.

9.2 Advantages

• Simple to implement and a well known technique.

• Guarantee of optimal solution, provided the exploration order is sound.

• Can be parallelized easily.

9.3 Disadvantages

• Restricted to small sequences of code.

• Choosing the exact subset of the instruction set to implement in the superoptimizer,
or the subset for superoptimization is hard.

9.4 Research Questions

• How  can  sequences  be  enumerated  in  cost  order  when  the  machine  model  is
complex? This could require an amount of  “fuzziness”,  where when a solution is
found, the superoptimizer continues for a certain amount of extra cost.

• Can we build a fast way of recognizing areas of the search space which are never
optimal, and quickly exclude them?

• Can the canonical form of registers be extended to cope with instructions that have
constraints on the register slot?

• The machine state lookup improvement is heavily dependent on the initial values
chosen for the registers. Is there a way of choosing a good set of values?

• What other techniques are there of improving a brute-force search? 

10 Learning Optimizer

STOKE [9] is an optimizer based on machine learning techniques to guide the search for an
instruction  sequence.  This  type  of  superoptimizer  is  able  to  find  much  longer  code
sequences in the same amount of time (up to 16 instructions).
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A similar design could be embedded into a compiler, since the search can utilize an existing
sequence  as  the  starting  point  for  the  superoptimization.  Then  the  sequence  can  be
permuted until a better sequence is found.

10.1 Design

A compiler pass, placed near the end of  the compilation process that will  use machine
learning  techniques  to  attempt  to  improve  the  code.  Initially  the  pass  would  work  on
individual basic block, selected by a heuristic based on the length and type of instructions
in the basic block.

The chosen machine learning method is then applied to the instruction sequence (see the
next section), and this sequence is tested (requiring the compiler pass to be able to simulate
instructions for  the target  machine).  If  the sequence matches then it  is  verified  if  it  is
correct, and a cost model applied. If the sequence is correct, and performs better then either
the  search  can  stop  there,  integrating  that  sequence  into  the  code,  or  the  search  can
continue and attempt to find better sequences. Otherwise the search continues until the
allotted time has expired.

10.2 Machine Learning

The  most  challenging  part  of  this  approach  to  superoptimization  is  choosing  a  fitness
function that guides the search towards a correct sequence. STOKE used a function which
measured the number of correct bits in the output registers, combined with the performance
model to guide it towards efficient solutions. This is necessary for creating solutions from
scratch, and if the search accepts an invalid sequence. 

STOKE used a Monte Carlo Markov chain method (similar to simulated annealing) to choose
which  sequence  to  use  next.  This  approach  mutated  the  instruction  sequence,  then
accepted it if the fitness of the solution had gone up. The solution was also accepted if it was
less fit, with a certain probability dependent on the value of the fitness.

Other learning schemes could be used, such as genetic programming or genetic algorithms.
The performance model can easily be swapped out for other metrics, such as code size and
energy consumption.

10.3 Advantages

• Able to explore longer instruction sequences.

• Reduced time to find a solution compared to other methods.

• Giving the compiler a longer time to perform the optimizations will generally result in
better solutions.

• Some  machine  learning  techniques  can  be  parallelized  easily,  allowing  faster
exploration.

10.4 Disadvantages

• No guarantee of optimality.

• There can be many parameters to tune, which greatly affect the time and solution
found by the optimizer.

10.5 Research Questions

• If the code was modified since the last compilation, can the previous results of the
search be used as an initial seed, and guided towards a correct sequence.

• Which method of machine learning works well on this kind of problem?
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• How close to optimality does this approach come? How long does the superoptimizer
have to be run to get within X% of optimal?

11 Constructive

This  section  presents  the  experimental  design  for  a  constructive  superoptimizer.  The
premise of the superoptimizer is to split the synthesis task into two components – creating
an optimal dataflow DAG, then optimally lowering this DAG to sequential instructions.

This  approach  allows  unsupported  instruction  sequences  to  be  superoptimized,  by
superoptimizing 'around' them. 

11.1 DAG superoptimizer

This portion of the superoptimizer takes a sequence of code as input,  and produces an
optimal DAG as output.

 1. Compile the code at the desired optimization level.

 2. Construct a control flow graph from the code, and perform liveness analysis on the
code.

 3. For the targeted sections of code, construct a dataflow DAG for each basic block.

 4. Simplify the DAG, so that register assignments are removed, and implied by the DAG.

 5. Compose the multiple basic blocks into a large DAG.

 6. Transform the DAG into SMT constraints – this is used for the verify step.

 7. Construct the skeleton DAG.

 8. Iteratively perform Counter Example Guided Inductive Synthesis to fill in the holes in
the DAG.

11.1.1 The dataflow DAG

The dataflow DAG is constructed per basic block, and describes the dataflow within that
basic block. This is constructed by placing an edge between the instruction that generates a
value, and an instruction that uses that value.  If no instruction in that block creates the
value that is needed by an instruction then the register holding that instruction must be live
on entry to the block. The liveness analysis provides a set of registers which are live on exit
from the block. If an instruction creates a value which is not used in the basic block, the
registers which are live on exit from the basic block indicate whether the instructions output
should be on an edge out of the block.

Once the dataflow DAG has been constructed, the  register names are removed. All of the
memory operations are represented sequentially unless volatility can be ignored. If volatility
is to be ignored, alias analysis can be performed to break the dependencies.

11.1.2 DAG composition

Multiple DAGs can be composed together, by linking the registers in to each DAG with the
registers  generated  by  the  previous basic  blocks.  In  the  case  where  there  are  multiple
previous basic blocks there would be multiple edges into a node for a single value. These
should be  intermediary  multiplexor  (phi)  nodes  inserted.  These  multiplexors  choose  the
values to propagate, based on the selector's value. The selector's value is chosen based on
conditions generated in previous basic blocks.

11.1.3 Skeleton DAG

The skeleton dataflow DAG is a reduced form of the previously constructed DAG, with only
the  portions  which  are  difficult  to  superoptimize  remaining.  For  example,  if  memory
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operations were not implemented in the superoptimizer, the memory operations and their
connections  would  remain  in  this  DAG.  The  following  diagrams  show  examples  of  the
skeleton DAG. The blue arrows indicate a register dependency, red indicates a dependency
on a flag and green indicates a memory dependency.

Dataflow DAG Skeleton DAG

This dataflow DAG only operates on r24 (r0
is used by the multiply, r1 is cleared after 
the multiply). Therefore only r24 needs to 
be considered for input and output, along 
with the flag dependency, indicating to the 
branch.
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Dataflow DAG Skeleton DAG

In this example, the chain of memory 
accesses is kept identical, with the 
dependencies. The rest of the instruction 
can be filled in using the values provided 
by the existing instructions.

This example indicates how multiple basic 
blocks can be combined into a single 
skeleton DAG. Two outputs for r24 must 
be produced, along with a condition that 
selects between them. This is selected by a 
multiplexor component in the DAG. The “br
A” and “br B” indicate the next destination 
of the code is also dependent on the flags.

This form of the DAG allows the potential 
for control flow to be encoded, then 
subsequently split into separate basic 
blocks or a conditional move performed (as 
decided by the lowering step). 
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11.1.4 Filling in the skeleton DAG

Both the dataflow DAG and the skeleton DAG are converted into SMT constraints.  The
corresponding points  on the  graph can then be  asserted for  equality  –  the  inputs,  the
outputs, and the intermediary nodes in the skeleton DAG.

Counter  Example  Guided  Inductive  Synthesis  can  then  be  performed,  with  the  set  of
instructions  in  the  instruction  set  as  components.  With  an  interactive  increase  in  the
number of components available, this will result in a optimal solution to make the skeleton
DAG and dataflow DAG equivalent.

11.2 Lowering superoptimizer

This  takes  in  the  optimal  DAG  as  input,  and  outputs  a  sequence  of  assembly  level
instructions. This can be performed by using integer linear programming (ILP) to represent
the ordering of the instructions and perform optimal register allocation. Additionally this
can optimize the splitting of the computed DAG into multiple basic blocks. By using an ILP
solver, the metric for superoptimization can be considered:

• Code size: minimize the control flow such that the total code size is small. This will
likely result in code which performs slowly, as if conversion may be done on the entire
set of blocks.

• Performance: minimize the average path length when the control flow is included. This
could  use  profile  data  on  the  range  of  values  the  multiplexor  expressions  take,
allowing control flow which minimizes the execution time to be inserted.

More research is needed for the exact formulation of the ILP problem (it is covered in detail
in [10]–[12]), however, the DAG itself can be lowered using traditional compiler techniques
(register allocations, scheduling).

11.3 Advantages

• Decomposes superoptimization into smaller more manageable problems. This allows
the compiler to substitute in non-optimal techniques if  a particular subproblem is
taking too long.

• Able to generate multiple basic blocks.

• Possibly able to handle large sequences of code (20 instructions).

11.4 Disadvantages

• Complex to implement. 

• Currently untested and may not provide the speed ups necessary.

• Difficult to parallelism (few efficient parallel SAT solvers exist).

• Decomposition of the problem may result in no guarantee of optimality.

11.5 Research Questions

There are several additional items to be researched before this design can be realized.

• Does a minimal DAG correspond to a minimal instruction sequence? Can the DAG
synthesis be biased towards DAGs which make the ILP problem easier?

• What is the best way of formulating the ILP problem?
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Conclusion

Today there are only a handful of areas where superoptimization can be applied effectively
in a commercial context. In particular, there are  significant limitations on producing code
sequences which include memory and branching operations. This paper  has shown how the
commercial value of superoptimization can be increased in both long and short term.

Three different designs for superoptimizers were analyzed: those based on brute-force, those
applying machine learning; and those using constructive approaches. Overall, the brute-
force superoptimizer has the lowest risk, being built on well known technologies. However, it
has the most limitations, being restricted to a small number of instructions. On the other
end of the scale, a superoptimizer taking a constructive approach with SMT solvers may be
able to scale to much longer sequences, however the technology  is in its infancy and needs
extensive development. The machine learning based superoptimizer has the most potential
for  immediate  benefits,  with  a  smaller  amount  of  additional  research  to  develop,  and
potentially  large  gains.  This  superoptimizer  may  not  be  able  to  guarantee  an  optimal
solution  is  found,  but  can  quickly  explore  possible  solutions  and  improve  code
size/speed/energy.

The features of the instruction set greatly affect the efficacy of superoptimization and there
are a number of instruction set features which cannot be superoptimized. Some of these are
fundamentally  difficult,  such  as  a  superoptimizer  producing  loops,  while  some  are
implementation difficulties, such as supporting memory accesses.

As a result we can see three stages to the future deployment of superoptimization.

 1. Immediate  use  of  the  GNU superoptimizer  (a  brute  force  tool)  to  help  customers
optimize  key  sections  of  code,  with  short-term  improvements  to  make  it  easy  to
generate goal functions automatically from source assembler. This is quite a niche
application, and its commercial value is largely in cementing Embecosm's technical
credibility.

 2. In the medium term, application of DAG analysis to increase the applicability of the
brute force approach and development of machine learning technology to make the
brute force approach more directed. This is still  relatively high risk, and would be
appropriate for feasibility funding by Innovate UK.

 3. In the longer term, investment in constructive approaches, with academic study to
determine  how to  handle  loop  generation,  memory  access  and  floating  point.  The
starting point for this should research council funded academic projects, but in which
Embecosm would provide some industrial support.

However  this  study  has  identified  some  areas  with  scope  to  increase  the  commercial
relevance with some relatively modest R&D investment, albeit at quite high risk. There is
much greater scope longer term, but this will in the first instance require major academic
investment to resolve issues with memory access, branching and floating point.

This  has  been a  very  high risk  study.  Embecosm would like  to  express  our  thanks to
Innovate UK for their support, without which we could not have carried out this work.
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