
The OpenCores OpenRISC 1000
Simulator and Tool Chain

Installation Guide

Jeremy Bennett
Embecosm

Application Note 2. Issue 3
Published November 2008

http://www.embecosm.com

ii Copyright © 2008 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Jeremy Bennett of Embecosm

(www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com

iii Copyright © 2008 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. About Embecosm .. 1
2. About OpenRISC 1000 .. 2

2.1. Obtaining the OpenRISC 1000 Tool Chain .. 2
2.2. Components of the OpenRISC 1000 Tool Chain .. 2
2.3. Locations of Source and Patches .. 3

3. Building the Components .. 5
3.1. GNU binutils Version 2.16.1 ... 5

3.1.1. Generating the binutils Source Code .. 5
3.1.2. Configuring binutils ... 5
3.1.3. Building and Installing binutils .. 6
3.1.4. Setting up binutils ... 6

3.2. GNU C Compiler Version 3.4.4 (Initial Version) ... 7
3.2.1. Generating the GCC Source Code ... 7
3.2.2. Configuring GCC .. 7
3.2.3. Building and Installing GCC ... 8

3.3. GNU Debugger Version 6.8 ... 8
3.3.1. Generating the GDB Source Code ... 9
3.3.2. Configuring GDB .. 9
3.3.3. Building and Installing GDB .. 9

3.4. Linux Kernel Version 2.6.23 ... 9
3.4.1. Generating the Linux Source Code ... 9
3.4.2. Configuring Linux .. 10
3.4.3. Building Linux for the OpenRISC 1200 ... 10

3.5. uClibc Version 0.9.28.3 .. 10
3.5.1. Generating the uClibc Source ... 11
3.5.2. Configuring uClibc ... 11
3.5.3. Building and installing uClibc .. 12

3.6. GNU C Compiler Version 3.4.4 (Linux and uClibc aware) 12
3.6.1. Reconfiguring GCC ... 12
3.6.2. Rebuilding GCC .. 13

3.7. The Or1ksim Simulator .. 13
3.7.1. Generating the Or1ksim Source .. 13
3.7.2. Configuring Or1ksim .. 14
3.7.3. Building and installing Or1ksim ... 14
3.7.4. Setting up Or1ksim .. 15

4. Getting it All to Work! ... 16
4.1. Running the Or1ksim Test Suite ... 16

4.1.1. Configuring the Or1ksim Test Suite .. 16
4.1.2. Running the Or1ksim Test Suite .. 16

4.2. Linux with Or1ksim .. 17
4.2.1. Configuring Or1ksim for use with Linux ... 17
4.2.2. Running Linux on Or1ksim .. 17

5. Debugging Strategies ... 20
5.1. Debugging using OpenRISC GDB via RSP and Or1ksim 20
5.2. Debugging Linux ... 21

Bibliography .. 23
Index .. 24

1 Copyright © 2008 Embecosm Limited

Chapter 1. Introduction
Many of the other application notes and technical papers written by Embecosm make use of
the OpenCores OpenRISC 1000 simulator and tool chain in examples. Since these systems
are made available under open source licenses, they are a convenient base for examples that
can be used freely.

This application note supports these existing application notes and technical papers by doc-
umenting how the OpenRISC 1000 Or1ksim architecture and its associated tool chain should
be installed. It also provides examples of the simulator and tool chain in use, including a
recent Linux kernel.

Issue 3 of this application note is updated to use release 2.0 of the port of GDB 6.8 and Linux
kernel version 2.6.23. A number of clarifications have been added in the light of user feedback
on issues 1 and 2.

1.1. About Embecosm
Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services.

• Customization of open source tools and software, including porting to new architectures.

• Support, tutorials and training for open source tools and software.

• Custom software development for the embedded market, including bespoke software
models of hardware.

• Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

http://www.embecosm.com/

2 Copyright © 2008 Embecosm Limited

Chapter 2. About OpenRISC 1000
The OpenRISC 1000 project forms part of the OpenCores organization (www.opencores.org).
Its aim is to create a free open source computing platform, comprising:

• An open source 32/64 bit RISC/DSP architecture;

• A set of open source implementations of the architecture; and

• A complete open source tool chain and operating system.

The OpenRISC 1000 project has resulted in Verilog for a 32 processor core, the OpenRISC 1200
(sometimes known as OR1200) and a complete reference System on Chip (SoC) design using
that core, ORPSoC.

2.1. Obtaining the OpenRISC 1000 Tool Chain
The OpenCores website provides three mechanisms for obtaining the tool chain.

1. The simplest method is to use a virtual Ubuntu image running under VMware. Details
of this can be found at www.opencores.org/projects.cgi/web/or1k/vmware_image.

2. To install the tools native on a Linux platform, OpenCores provides a script, which
will download, patch, build and install all the tools. Details of this can be found at
www.opencores.org/projects.cgi/web/or1k/gnu_toolchain_port.

3. Finally there are a set of basic instructions for building the individual tools. These are
somewhat out of date and consigned to a legacy web page (see www.opencores.org/
projects.cgi/web/or1k/gnu_toolchain_port_old). These can be slightly out-of-date, and
are usefully supplemented by Rich D'Addio's Meansoffreedom (MOF) website.

This application note recognizes that a virtual image or a pre-packaged script may not provide
the detailed control over tools, or access to the latest versions required by some users. It brings
together the legacy instructions from the OpenCores website with the extensions from MOF
and updates them for 2008.

The precise details vary depending on the environment used. The examples given below were
all verified on a workstation using GCC 4.3.0 under Fedora 9 Linux. The procedure should be
very similar under other Linux versions.

2.2. Components of the OpenRISC 1000 Tool Chain
This application note describes several components of the OpenRISC 1000 project:

• GNU binutils, GCC and GDB from the GNU tool chain port;

• the Linux kernel;

• the uClibc library and

http://www.opencores.org
http://www.opencores.org/projects.cgi/web/or1k/vmware_image
http://www.opencores.org/projects.cgi/web/or1k/gnu_toolchain_port
http://www.opencores.org/projects.cgi/web/or1k/gnu_toolchain_port_old
http://www.opencores.org/projects.cgi/web/or1k/gnu_toolchain_port_old
http://www.meansoffreedom.com/

3 Copyright © 2008 Embecosm Limited

• the Or1ksim architectural simulator.

Note
The GNU tool chain (binutils, GCC, GDB) is built for a cross-compiling environment.
In other words the tools are designed to run on the development workstation, but
generate code for the target (OpenRISC 1200) architecture.

2.3. Locations of Source and Patches
Each tool in the tool chain is built from its source code. In all cases the source code is derived
from the standard source code by patching with changes required for OpenRISC 1000. So for
each tool there will be one source distribution to download (typically as a compressed tar file)
and one or more patch files (typically compressed).

Locations of the patch files for each tool are noted here. Where more than one location is given
for the same item, they represent alternative download points for the same file.

Note
Some of these are FTP sites and some HTTP site. All should be accessible through
a web browser using the link shown. Downloads from the OpenCores website re-
quires a login (which is free). Some other downloads may require login and pass-
word, which are given in the table.

4 Copyright © 2008 Embecosm Limited

Tool Item Location
Distribution http://ftp.gnu.org/gnu/binutils/binutils-2.16.1.tar.bz2

binutils MOF patch for Open-
RISC 1000

http://www.meansoffreedom.com/
binutils_2.16.1_unified.diff_rgd_fixed.bz2

Distribution http://ftp.gnu.org/gnu/gcc/gcc-3.4.4/gcc-3.4.4.tar.bz2
GCC MOF patch for Open-

RISC 1000
http://www.meansoffreedom.com/gcc-3.4.4-or32-
unified.diff.bz2

Distribution http://ftp.gnu.org/gnu/gdb/gdb-6.8.tar.bz2

GDB
Patch for Open-
RISC 1000

http://www.opencores.org/projects.cgi/web/or1k/or32-
gdb-6.8-patch-2.0.bz2 (requires free OpenCores login)

http://www.embecosm.com/packages/esp3/embe-
cosm-esp3-or32-gdb-6.8-patch-2.0.bz2

Distribution ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
linux-2.6.23.tar.bz2

Linux MOF patch for Open-
RISC 1000

ftp://www.meansoffreedom.com/mof_orsoc/
linux_2.6.23_or32_unified_simtested.bz2

Requires user name: download, password: download.

Distribution http://www.uclibc.org/down-
loads/uClibc-0.9.28.3.tar.bz2

MOF main patch for
OpenRISC 1000

http://www.meansoffreedom.com/uClibc-0.9.28-or32-
unified.bz2

MOF supplemen-
tary patch for Open-
RISC 1000

http://www.meansoffreedom.com/uClibc-0.9.28-or32-
libc-support.bz2

Embecosm patch for
OpenRISC 1000

http://www.embecosm.com/packages/esp2/embe-
cosm-esp2-or32-uclibc-0.9.28.3-patch-2.0.bz2

uClibc

MOF .config file for
OpenRISC 1000

http://www.meansoffreedom.com/
rgd_dot_config_example_uclibc.html

The text on this web page should be cut and pasted in-
to the .config file (replacing the existing contents) in the
main uClibc directory.

Distribution http://www.opencores.org/projects.cgi/web/or1k/
or1ksim-0.3.0rc2.tar.gz (development version, requires
free OpenCores login)

http://www.opencores.org/projects.cgi/web/or1k/
or1ksim-0.2.0.tar.gz (stable version, requires free Open-
Cores login)Or1ksim

Patch for Or1ksim
0.2.0

http://www.opencores.org/projects.cgi/web/or1k/
or1ksim-0.2.0-patch-2.0.bz2 (requires free OpenCores
login)

http://www.embecosm.com/packages/esp2/embe-
cosm-esp2-or1ksim-0.2.0-patch-2.0.bz2

The use of these source distributions and patches is described in the sections of Chapter 3
relevant to each tool.

http://ftp.gnu.org/gnu/binutils/binutils-2.16.1.tar.bz2
http://www.meansoffreedom.com/binutils_2.16.1_unified.diff_rgd_fixed.bz2
http://www.meansoffreedom.com/binutils_2.16.1_unified.diff_rgd_fixed.bz2
http://ftp.gnu.org/gnu/gcc/gcc-3.4.4/gcc-3.4.4.tar.bz2
http://www.meansoffreedom.com/gcc-3.4.4-or32-unified.diff.bz2
http://www.meansoffreedom.com/gcc-3.4.4-or32-unified.diff.bz2
http://ftp.gnu.org/gnu/gdb/gdb-6.8.tar.bz2
http://www.opencores.org/projects.cgi/web/or1k/or32-gdb-6.8-patch-2.0.bz2
http://www.opencores.org/projects.cgi/web/or1k/or32-gdb-6.8-patch-2.0.bz2
http://www.embecosm.com/packages/esp3/embecosm-esp3-or32-gdb-6.8-patch-2.0.bz2
http://www.embecosm.com/packages/esp3/embecosm-esp3-or32-gdb-6.8-patch-2.0.bz2
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.23.tar.bz2
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.23.tar.bz2
ftp://www.meansoffreedom.com/mof_orsoc/linux_2.6.23_or32_unified_simtested.bz2
ftp://www.meansoffreedom.com/mof_orsoc/linux_2.6.23_or32_unified_simtested.bz2
http://www.uclibc.org/downloads/uClibc-0.9.28.3.tar.bz2
http://www.uclibc.org/downloads/uClibc-0.9.28.3.tar.bz2
http://www.meansoffreedom.com/uClibc-0.9.28-or32-unified.bz2
http://www.meansoffreedom.com/uClibc-0.9.28-or32-unified.bz2
http://www.meansoffreedom.com/uClibc-0.9.28-or32-libc-support.bz2
http://www.meansoffreedom.com/uClibc-0.9.28-or32-libc-support.bz2
http://www.embecosm.com/packages/esp2/embecosm-esp2-or32-uclibc-0.9.28.3-patch-2.0.bz2
http://www.embecosm.com/packages/esp2/embecosm-esp2-or32-uclibc-0.9.28.3-patch-2.0.bz2
http://www.meansoffreedom.com/rgd_dot_config_example_uclibc.html
http://www.meansoffreedom.com/rgd_dot_config_example_uclibc.html
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.3.0rc2.tar.gz
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.3.0rc2.tar.gz
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.2.0.tar.gz
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.2.0.tar.gz
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.2.0-patch-2.0.bz2
http://www.opencores.org/projects.cgi/web/or1k/or1ksim-0.2.0-patch-2.0.bz2
http://www.embecosm.com/packages/esp2/embecosm-esp2-or1ksim-0.2.0-patch-2.0.bz2
http://www.embecosm.com/packages/esp2/embecosm-esp2-or1ksim-0.2.0-patch-2.0.bz2

5 Copyright © 2008 Embecosm Limited

Chapter 3. Building the Components
In general the OpenCores website (www.opencores.org) provides patch files for tools from third
parties (e.g. GCC), rather than the full source code tree (See Section 3.1.1 for an example of
how to apply a patch file.). In general the OpenCores CVS tree contains only the files that
differ from the standard source code of the tool and a diff file to apply those changes to the
standard source code.

3.1. GNU binutils Version 2.16.1
binutils provides the basic GNU utilities required by the remainder of the tool chain. The tools
are addr2line, ar, as, c++filt, ld, nm, objcopy, objdump, ranlib, readelf, size, strings and
strip.

!
Important
Having built and installed binutils, don't forget to follow the binutils specific in-
structions in Section 3.1.4.

3.1.1. Generating the binutils Source Code
Download clean versions of the distribution and the patch file for OpenRISC 1000 from the
locations given in Section 2.3. The patch file from MOF is recommended rather than the patch
file which can be found on the OpenCores website, since it fixes a major bug in binutils.

!
Important
Ensure the version number (2.16.1) of the distribution is exactly the same.

Unpack the downloaded source code and apply the patch file.

Note
A patch file is the output from a recursive use of diff between two file hierarchies—
typically the original file hierarchy and the file hierarchy with changes. The patch
utility provides the inverse functions, allowing the new file hierarchy to be gener-
ated from the original.

Since the names of the top directories in the hierarchy may not be identical, patch
includes an option -p to specify the amount of the file hierarchy to be stripped off.
A value of 1 is common, to remove just the top level directory name.

For example if the source code has been downloaded as binutils-2.16.1.tar.bz2
with the patch file in the same directory, the following commands would be appro-
priate

tar jxf binutils-2.16.1.tar.bz2
cd binutils-2.16.1
bzcat -dc ../binutils_2.16.1_unified.diff_rgd_fixed.bz2 | patch -p1

3.1.2. Configuring binutils
All the GNU components build in a directory separate from the original source tree. A configure
script is used from within this build directory to generate a make file suitable for the particular
component.

http://www.opencores.org

6 Copyright © 2008 Embecosm Limited

The configure script has a huge number of parameters (try configure --help). Two are com-
mon to building the OpenRISC 1200 tool chain.

--target=architecture The configuration has been extended to understand the Open-
RISC 32 bit architecture if the --target option is set to or32-
uclinux. The name of the target architecture was chosen, since
the work was originally aimed at supporting uClinux.

--prefix=install This specifies the directory in which all the components will be
installed. The default (typically /usr/local) is not appropriate,
since these are not tools for the workstation, but to cross-com-
pile for the OpenRISC 1200 core. It is important that the same
installation directory is used for all the components built. The
examples here all use /opt/or32 as the install directory.

For example if the source code has been downloaded and patched in a sub-directory, binu-
tils-2.16.1, then from the parent directory (i.e. the one containing binutils-2.16.1), the
following commands would be appropriate.

mkdir builddir_binutils
cd builddir_binutils
../binutils-2.16.1/configure --target=or32-uclinux --prefix=/opt/or32

3.1.3. Building and Installing binutils
Having configured the component, there are then three steps to building and installing the
component.

make all Build the component in the build directory.

make check Carry out tests to ensure the component has built correctly.
This will be of limited use here, since the goal is to build a
cross compiling tool chain, the results of which will not run in
the development environment.

make install Install the component in the directory specified when config-
uring.

For example if a build directory has been created as in Section 3.1.2, then the following com-
mands would be appropriate.

make all
make install

The result is a set of cross platform commands installed in /opt/or32/bin: or32-
uclinux-addr2line, or32-uclinux-ar, or32-uclinux-as, or32-uclinux-c++filt, or32-uclin-
ux-ld, or32-uclinux-nm, or32-uclinux-objcopy, or32-uclinux-objdump, or32-uclinux-ran-
lib, or32-uclinux-readelf, or32-uclinux-size, or32-uclinux-strings and or32-uclinux-strip.

In addition there is also a further sub-directory, /opt/or32/or32-uclinux/bin (observe the
extra or32-uclinx), which provides the main cross-platform commands without their prefix
(ar, as, ld, nm, objdump, ranlib and strip). This will be required by later component builds.

3.1.4. Setting up binutils
The key final stage is to add the new cross-platform utilities to the search path, so they can
be found in subsequent stages. For sh and bash users:

7 Copyright © 2008 Embecosm Limited

export PATH=/opt/or32/bin:$PATH

For csh and tcsh users:

setenv PATH /opt/or32/bin:$PATH

Tip
It is useful to add these environment setup commands to .profile (sh users),
.bash_profile (bash users) or .login (csh and tcsh), to ensure they are set up for
subsequent sessions.

3.2. GNU C Compiler Version 3.4.4 (Initial Version)
A compiler is closely tied to its associated operating system and libraries, in this case Linux
and uClibc. Eventually the GCC compiler has to be built in parallel with both of these (see
Section 3.6.1). However, initially a plain compiler without knowledge of operating system or
libraries suffices.

3.2.1. Generating the GCC Source Code
Download clean versions of the distribution and the patch file for OpenRISC 1000 from the
locations given in Section 2.3. The recommended patch file comes from the MOF website. It
is identical in content to the patch file which can be found on the OpenCores website, but is
compressed, which saves bandwidth.

!
Important
Ensure the version number of the distribution (3.4.4) is exactly the same.

Unpack the downloaded source code and apply the patch file (See Section 3.1.1 for an example
of how to apply a patch file.).

3.2.2. Configuring GCC
Like binutils, GCC is built in a separate build directory. It is configured to create just a cross-
compiler for C.

mkdir builddir-gcc
cd builddir-gcc
../gcc-3.4.4/configure --target=or32-uclinux --prefix=/opt/or32 \
 --enable-languages=c

The configuration will automatically assume that the various binutils utilities are prefixed by
the target name, so finds or32-uclinux-as as the assembler and or32-uclinux-ld as the linker,
so long as they are on the search path (in this example /opt/or32/bin).

Note
These instructions are simpler than those given on the MOF and OpenCores web-
sites. At this stage the objective is a vanilla cross-compiler, without reference to
the Linux operating system or uClibc libraries. No additional configuration flags
are required.

8 Copyright © 2008 Embecosm Limited

3.2.3. Building and Installing GCC
The procedure is the same as that from binutils (see Section 3.1.3). As before the use of
make check is omitted, since it is of little meaning in a cross-compiling environment.

make all
make install

Five new commands are now available in the installation bin sub-directory: or32-uclinux-cpp,
or32-uclinux-gcc, or32-uclinux-gcc-3.4.4, or32-uclinux-gccbug and or32-uclinux-gcov.

In addition gcc without its prefix appears in the /opt/or32/or32-uclinux/bin directory.

The installation has also set up a GCC library hierarchy in /opt/or32/lib/gcc/or32-uclin-
ux/3.4.4. As well as the main GCC library, this includes fixed versions of include files. These
are not relevant at this stage, but will be important when the Linux and uClibc installations
are created and fixed versions of their header files are required.

3.3. GNU Debugger Version 6.8
GDB is not essential to getting a working Linux environment for OpenRISC, so this step may
be omitted initially.

This section documents release 2.0 of the GDB version 6.8 for the OpenRISC 1000. This im-
plements the GDB Remote Serial Protocol (RSP) for OpenRISC 1000, thereby enabling the GDB
target remote and target extended-remote commands.

!
Important
This is now the recommended protocol for connecting GDB to OpenRISC 1000
targets.

Previously, the OpenRISC 1000 port of GDB only worked through the JTAG port of the proces-
sor, which had to incorporate a working debug unit. The connection to the target could either
be through the parallel port to physical hardware connected via a JP1 header, or via TCP/IP to
a remote target. Communication to the remote target was via the proprietary OpenRISC 1000
Remote JTAG Protocol.

!
Important
The OpenRISC 1000 Remote JTAG Protocol is still supported for backward com-
patibility, but now deprecated. All remote connection should be through the GDB
Remote Serial Protocol.

A remote target should implement the server side of either or both of the GDB Remote Seri-
al Protocol and the OpenRISC 1000 Remote JTAG Protocol. The target may be the Or1ksim
architectural simulator or a driver for physical hardware, such as the USB JTAG connector
made by ORSoC AB.

There are two variants of the Debug Unit for the OpenRISC 1000, with slightly different JTAG
interfaces.

1. The original JTAG interface was created as part of the OpenRISC SoC project, ORPSoC
[4]. It provides three scan chains: one to access all the Special Purpose Registers, one to
access external memory and one providing control of the CPU. The control scan chain
can reset, stall or trace the processor.

2. A new JTAG interface was provided by Igor Mohor in 2004 [5]. It provides the same
access to Special Purpose Registers and external memory, but offers a simpler control
interface offering only the ability to stall or reset the processor.

9 Copyright © 2008 Embecosm Limited

When connecting via the GDB Remote Serial Protocol, the version of JTAG implemented does
not matter—the RSP server will resolve the issue automatically. However for direct connection,
or remote connection via the OpenRISC 1000 Remote JTAG Protocol, the type of JTAG interface
must be specified.

A detailed description of the OpenRISC 1000 port of GDB is provided in the GDB "howto"
from Embecosm [2]. An explanation of the RSP server implementation is provided in the RSP
"howto" from Embecosm [3].

This version of GDB has been tested with version 0.3.0 release candidate 2 of Or1ksim as
described in Section 3.7. This implements the original ORPSoC version of the Debug Unit.
The OpenRISC 1000 port of GDB is designed to support either interface, controlled by GDB
commands described in the User Guide.

Note
To date there has been limited testing of GDB 6.8 with real hardware. User feedback
on experience with real hardware is welcomed.

3.3.1. Generating the GDB Source Code
Download clean versions of the distribution and the patch file for OpenRISC 1000 from the
locations given in Section 2.3.

!
Important
Ensure the version number (6.8) is exactly the same

Unpack the downloaded source code. No patching is needed.

3.3.2. Configuring GDB
Like binutils and GCC, GDB is built in a separate build directory. It is configured to create just
a cross-platform debugger for OpenRISC 1000 programs compiled with or32-uclinux-gcc.

mkdir builddir-gdb
cd builddir-gdb
../gdb-6.8/configure --target=or32-uclinux --prefix=/opt/or32

3.3.3. Building and Installing GDB
The procedure to build GDB is the same as that from with binutils and GCC. As with these
tools, the use of make check is omitted, since it is of little meaning in a cross-compiling
environment.

make all
make install

3.4. Linux Kernel Version 2.6.23
This version of the application note describes Linux kernel version 2.6.23, for which a much
simplified build has been developed.

3.4.1. Generating the Linux Source Code
Download clean versions of the distribution and the patch file for OpenRISC 1000 from the
locations given in Section 2.3.

10 Copyright © 2008 Embecosm Limited

!
Important
Ensure the version number (2.6.23) is exactly the same.

Unpack the downloaded source code and apply the patch file (See Section 3.1.1 for an example
of how to apply a patch file.).

3.4.2. Configuring Linux
The configuration options for a Linux kernel are held in the .config file in the top directory of
the kernel. The code patched for OpenRISC sets up a suitable file in .config.

Note
Previous versions of these instructions required copying of a file into the .config
file. This is no longer required.

The kernel can now be configured using its graphical configuration tool.

make menuconfig ARCH=or32 CROSS_COMPILE=/opt/or32/bin/or32-uclinux-

Use the cursor keys to move to the OpenRISC specific drivers sub-menu and select it. There
is only one entry, OpenCores Ethernet support, which should be deselected (press N).

Note
The Ethernet code does not appear to work reliably in the Or1ksim simulator, which
is why it is deselected here.

Having made this change, exit up through the menus and from the configuration system,
saving the configuration file when prompted. As well as creating the .config file, this will have
also linked in the correct include files for the Linux kernel build.

The build of Linux makes use of a RAMdisk filing system. For initial building, the patched
source includes an image from MOF which is suitable. This provides a set of BusyBox utilities
which can be used when Linux starts up.

Note
Previous versions of these instructions required copying of a file into the RAMdisk
image. This is no longer required.

3.4.3. Building Linux for the OpenRISC 1200
The configured Linux is built from the configured make file.

make vmlinux ARCH=or32 CROSS_COMPILE=/opt/or32/bin/or32-uclinux-

Note
There will be a number of warnings at the end about section mismatches. These
are a known problem, which can be ignored.

3.5. uClibc Version 0.9.28.3
uClibc is a C library for use particularly in embedded environments. It is substantially smaller
than the full glibc library.

http://www.busybox.net
http://www.uclibc.org

11 Copyright © 2008 Embecosm Limited

3.5.1. Generating the uClibc Source
Download clean versions of the distribution and the three patch files for OpenRISC 1000 from
the locations given in Section 2.3.

!
Important
Ensure the version number (0.9.28.3) is exactly the same.

Unpack the downloaded source code. Apply the main MOF patch to the main uClibc directory
(See Section 3.1.1 for an example of how to apply a patch file.). Apply the supplementary MOF
patch file to the libc sub-directory of the uClibc directory not the main directory.

A further patch is required to ensure uClibc will work correctly with the OpenRISC tool chain.
The linker can get confused about the stdio library initialization and termination. To avoid
this, dummy versions of __stdio_init and __stdio_term must be added. Apply the Embecosm
patch file to the main directory to fix these problems.

The patches must be applied in this order. A typical set of commands would be:

cd uClibc-0.9.28.3
bzcat -dc ../uClibc-0.9.28-or32-unified.bz2 | patch -p1
cd libc
bzcat -dc ../../uClibc-0.9.28-or32-libc-support.bz2 | patch -p1
cd ..
bzcat -dc ../embecosm-esp2-or32-uclibc-0.9.28.3-patch-2.0.bz2 | patch -p1

3.5.2. Configuring uClibc
Additional configuration options specific to the OpenRISC core are provided in the patched
source tree. Make these available by linking to Config in the main directory

ln -s extra/Configs/Config.or32 Config

Configuration for uClibc is via the file .config in the main directory. Like Linux, uClibc also
provides a graphical configuration tool to set up .config.

The MOF website provides a template .config file. Copy this from the location given in Sec-
tion 2.3 into .config.

!
Caution
The patched source tree contains a file, DOT_CONFIG_or32. This is a historical rem-
nant, and should not be used as the .config file.

The configuration tool is not able to set every parameter, so edit .config with a text editor.
Change the line setting CROSS_COMPILER_PREFIX option to read.

CROSS_COMPILER_PREFIX="or32-uclinux-"

!
Important
This is a key change, and ensures the build of uClibc picks up the OpenRISC 1200
tool chain and not the standard workstation compiler

12 Copyright © 2008 Embecosm Limited

Run the configuration tool, so the remaining changes can be made with the graphical param-
eter editor.

make menuconfig

Note
The configuration tool will give two warnings that configuration symbol
CONFIG_OR32 refers to undefined symbols UCLIBC_HAS_MMU and ARCH_HAS_NO_FPU.
These are a known issue, but the warnings are harmless and may be ignored.

Use the cursor keys to move to the Target Architecture Features and Options sub-menu
and select it. Move to the Target CPU has a floating point unit (FPU) entry and deselect
it (press N). Then move further down to the last entry Linux kernel source location and set
this to point to the main Linux distribution directory.

Return back to the main menu and select the General Library Settings sub-menu. Move to
the Large File Support entry and deselect it.

Return back to the main menu and select the Library Installation Options sub-menu. Set
the entries for both the RUNTIME_PREFIX and DEVEL_PREFIX options to be the main installation
directory (in the examples here /opt/or32).

Return to the main menu and exit, saving the new configuration file.

3.5.3. Building and installing uClibc
The uClibc library is built and installed using make.

make all
make install

Note
There is no need to set the CC environment variable (as suggested by the MOF
website). The use of the CROSS_COMPILER_PREFIX parameter ensures the OpenRISC
tool chain is used.

!
Important
The uClibc make file dependencies are not complete. If any parameters are
changed, run make clean before rebuilding.

3.6. GNU C Compiler Version 3.4.4 (Linux and uClibc aware)
The previous build of GCC was not aware of Operating System specific include files and li-
braries. The compiler can now be rebuilt, so that it correctly picks up the Linux and uClibc
include files and libraries.

3.6.1. Reconfiguring GCC
Return to the build directory used to build the original GCC compiler (see Section 3.2.2). Delete
the contents and reconfigure GCC this time to include a local prefix for searching (using the
--with-local-prefix option to configure).

cd builddir-gcc
rm -rf *

13 Copyright © 2008 Embecosm Limited

../gcc-3.4.4/configure --target=or32-uclinux --prefix=/opt/or32 \
 --enable-languages=c --with-local-prefix=/opt/or32/or32-uclinux

The compiler will preferentially consider include and library files within the /opt/or32/or32-
linux directory (in other words the target specific sub-directory of the installation directory),
which can be used for all the Linux and uClibc files.

3.6.2. Rebuilding GCC
The build and install process for the compiler is identical:

make all
make install

The final stage is to populate the target specific directory. GCC will look here for a sys-include
directory. This can be linked to the parent include directory, which will have been populated
by the uClibc install process (including any Linux include files used by uClibc).

The lib sub-directory will be used by the linker from GCC to complete linking of compiled
programs. This cannot be simply linked, since not all of the main library should appear here.
Instead, the relevant library and object files are linked here.

In the examples given here, the install directory is /opt/or32. The following commands would
set the target specific directory up appropriately.

cd /opt/or32/or32-uclinux
ln -s ../include sys-include
cd lib
ln -s ../../lib/*.* .

!
Important
The MOF instructions suggest copying the library files into the lib directory. How-
ever linking is preferable, since when the uClibc is rebuilt, any changes will also
appear in the lib directory.

3.7. The Or1ksim Simulator
The OpenRISC architectural simulator, Or1ksim, is a traditional interpreting ISS, which also
models some of the standard ORPSoC components (memory, UART etc). It represents work in
progress. Having been dormant for two years, the project is now active again.

This section is mainly concerned with Or1ksim 0.3.0 candidate release 2 and later, since this
version is the first to implement the GDB Remote Serial Protocol. This is now the recommended
interface from GDB to Or1ksim. The old OpenRISC 1000 Remote JTAG Protocol is still part
of the system, but is now deprecated.

Since version 0.3.0 is still regarded as a development version of the tool. This section also
covers the use of the stable version 0.2.0.

3.7.1. Generating the Or1ksim Source
Download clean versions of the distribution and the patch file for OpenRISC 1000 from the
locations given in Section 2.3. Choose either the development version (0.3.0rc2, recommended)
or the old stable version (0.2.0).

14 Copyright © 2008 Embecosm Limited

!
Important
Ensure the version number (0.3.0rc2 for the development version or 0.2.0 for the
stable version) is exactly the same. Note in particular that the release candidate
versions of version 0.2.0 (0.2.0rc1, 0.2.0rc2 and 0.2.0rc3) are not suitable.

Unpack the downloaded source code. If using the stable version (0.2.0) apply the patch file
(See Section 3.1.1 for an example of how to apply a patch file.). No patching is required for
the development version (0.3.0rc2).

There are several issues in the stable version (0.2.0) of Or1ksim which are fixed by the patch
file.

1. A bug in connecting to the simulator from GDB via the JTAG port (bad call to fcntl).

2. Several bugs in using the simulator with an xterm connected to the UART

3. A problem with accessing strings when using diagnostic printf (the simprintf() func-
tion).

4. A problem with the caches being accessed, even when disabled. This problem is only
partially fixed.

5. A number of changes in the Special Purpose Register bit configurations in the Open-
RISC 1000 architecture. These have changed since Or1ksim was first created.

6. A number of changes to ensure the simulator works correctly with GDB 6.8.

The patch also adds a function to print a single character via a NOP trap. NOP 1 is adopted for
this function. This is particularly valuable when simprintf is not usable, during MMU setup.

All these changes (and many other improvements) are already incorporated in the development
version (0.3.0rc2), which thus needs no patching.

3.7.2. Configuring Or1ksim
Configuration is similar to that of the GNU tool chain, using a configure script, to set a target
and an install directory.

It is a good idea not to use the same install directory for binaries that was used for the tool
chain. The tool chain is aimed at cross compiling for the OpenRISC 1000 architecture and any
include files etc will be specific to that architecture. By contrast Or1ksim is a native application
for the workstation architecture (e.g. a PC). So a typical configuration would be:

mkdir builddir_or1ksim
cd builddir_or1ksim
../or1ksim-0.3.0rc2/configure --target=or32-uclinux --prefix=/opt/or1ksim

Note
The configuration target, or32-uclinux, is chosen for consistency with the main
tool chain. It is not the same as that suggested in the INSTALL instructions with
the distribution, but works perfectly satisfactorily.

Note
The INSTALL instructions with the distribution do not describe use of the --prefix
option, but this works very satisfactorily here.

3.7.3. Building and installing Or1ksim
Building and installing uses the make file generated by the configuration stage. There is no
use of the make check command, since there is a separate test suite for use with the simulator

15 Copyright © 2008 Embecosm Limited

(see Section 4.1). Assuming the install directory has been chosen as /opt/or1ksim, suitable
commands would be:

make
make install

A new command, or32-uclinux-sim will now be present in the opt/or1ksim/bin directory.

3.7.4. Setting up Or1ksim
If Or1ksim has been installed as recommended in a different directory to the remainder of the
tool chain, that directory must be added to the search path. For sh and bash users:

export PATH=/opt/or1ksim/bin:$PATH

For csh and tcsh users:

setenv PATH /opt/or1ksim/bin:$PATH

Tip
As with the main tool chain install directory, it is useful to add these environment
setup commands to .profile (sh users), .bash_profile (bash users) or .login (csh
and tcsh), to ensure they are set up for subsequent sessions.

16 Copyright © 2008 Embecosm Limited

Chapter 4. Getting it All to Work!
Or1ksim comes with a test suite of small programs to exercise the simulator. As a major test,
the Linux 2.6.23 kernel can be run on the simulator.

!
Caution
The Or1ksim test suite is known to have considerable limitations. It should be
considered only a rudimentary test that the tool chain and architectural simulator
are working.

4.1. Running the Or1ksim Test Suite
The test suite is found in the testbench sub-directory of the main Or1ksim distribution.

4.1.1. Configuring the Or1ksim Test Suite
The test suite is configured using a configure script. This specifies both the target and the
host (which forces cross-compilation for the OpenRISC 1000 architecture). Since the tests are
not to be installed, there is no need to use the --prefix option. The configuration command
should therefore be as follows.

cd or1ksim-0.2.0/testbench
./configure --target=or32-uclinux --host=or32

!
Caution
There appears to be a time stamp problem with the configure script, so that the
first time it is run it attempts to regenerate itself (without success). If this occurs,
then just rerun the command—it only fails once.

4.1.2. Running the Or1ksim Test Suite
Configuration creates a make file. make all will build all the tests, followed by make check
to run the tests.

!
Caution
The time stamp problem with the configure script may appear here when running
make all, so that the first time it is run it attempts to regenerate itself (without
success). If this occurs, then just rerun the make all command—it only fails once.

Each test, if successful should output the following two lines.

report(0xdeaddead);
exit(0)

In the event of a test failing, its output can be found in /tmp/testname_output and a count of
the cycles executed in /tmp/testname_error .

Note
The make check command does a simple test that the last two lines of output are
as indicated above to determine success or failure. In practice, one or two tests
(commonly the multiplication test and frame buffer test) may report failure, due to

17 Copyright © 2008 Embecosm Limited

Or1ksim warning messages being interspersed between and after these two lines.
Manual inspection of the relevant output files in the /tmp directory can be used to
verify correct termination has actually occurred.

4.2. Linux with Or1ksim

4.2.1. Configuring Or1ksim for use with Linux
Or1ksim is configured via a configuration file, which is specified by the -f. This is used to
specify the detailed behavior of the CPU (virtual memory, caches etc), the various memories
to be attached and the behavior of the various peripherals modeled. The structure of the con-
figuration file is described in comments within the default configuration file (sim.cfg supplied
in the main directory of Or1ksim).

The Linux distribution, as patched for OpenRISC, is supplied with a configuration file, sim.cfg
in its main directory. Three changes are needed to this, for the Linux kernel built in Section 3.4.

!
Caution
Do not attempt to use the sim.cfg supplied with Or1ksim itself. It specifies a com-
pletely inappropriate memory configuration for Linux.

Find the line beginning section sim in the file sim.cfg in the main Linux directory. This
is followed by lines giving parameter values for the simulation. Linux was built to run at a
notional 100MHz. The specification of the time taken by one clock cycle is out by a factor of
1000. Change the value of clkcycle option to 10ns.

Find section uart. This specifies that the channel for I/O should be via TCP port 84. This
will probably fail, since the port is in the Well Known Ports range, requiring administrative
privileges. If it is desired to run Linux through a telnet link, this should be changed to a value
in the Dynamic Range (49152-65535). A separate window can then connect to this port using
telnet.

Rather more elegant is to use an xterm for output. For this, change the channel specification
to:

channel = "xterm:"

Find section ethernet. Linux was built without Ethernet, so this should be disabled. Set the
enabled option to 0.

4.2.2. Running Linux on Or1ksim
The Linux kernel should now just boot up. Run Or1ksim from the main Linux directory:

cd linux-2.6.23
or32-uclinux-sim -f sim.cfg vmlinux

Note
Or1ksim will give a number of warnings about invalid parameters. This is because
the sim.cfg file was originally created for a different version of Or1ksim. These
parameters are never used in this version of Or1ksim and the warnings can be
ignored.

Linux will initially show that it is copying from ROM to main memory, and then booting.

18 Copyright © 2008 Embecosm Limited

There is then a pause of one or two minutes, while the Linux kernel boots prior to configuring
the UART I/O. Once that point is reached, then standard Linux boot messages will begin to
appear. At the end of boot, the terminal will prompt to initiate a console session.

The core Linux commands are available, provided within a BusyBox environment. The default
terminal behavior echoes back what is typed, so the initial command should be.

stty -echo

Normal Linux behavior is then available.

http://www.busybox.net

19 Copyright © 2008 Embecosm Limited

Custom programs may be added to the Linux environment by compiling them and adding
them to the RAMdisk image. Instructions for this are provided on the MOF website.

20 Copyright © 2008 Embecosm Limited

Chapter 5. Debugging Strategies
Debugging with Or1ksim is much easier with the release of GDB 6.8 These are some sugges-
tions for approaches that work. Full details will be found in the GDB User Guide [1].

5.1. Debugging using OpenRISC GDB via RSP and Or1ksim
Note
With the introduction of the GDB Remote Serial Protocol interface in GDB 6.8 re-
lease 2.0 for OpenRISC 1000 and Or1ksim 0.3.0rc2 remote debugging has changed
considerably. The instructions here have changed significantly since the last issue
of this application note.

This requires the GNU debugger built for cross platform use with OpenRISC (see Section 3.3).
Or1ksim contains some guidelines in the file README.gdb in its main directory, but these relate
to the old GDB 5.3 version. The definitive instructions are in the GDB User Guide [1].

To use the remote debug feature of Or1ksim, enable the debug section in the simulator con-
figuration file. Set enabled option to 1 and rsp_enabled option to 1. The server port is not
chosen at random, but set by the server_port option here. Good practice would recommend
using a value in the Dynamic Range (49152-65535), such as the 51000 used in the default
configuration file. Or1ksim should be started without specifying any image file.

In a separate window start the OpenRISC 1000 GDB command (or32-uclinux-gdb).

Tip
For those who like their debugging to be graphical, it is perfectly feasible to run
GDB under DDD. The following would be a suitable DDD command line.

ddd --debugger or32-uclinux-gdb --gdb

There are three stages to setting up GDB.

1. Load a local symbol table (using the GDB file) command.

2. Connect to the remote simulator via RSP (using the GDB target) command.

3. Load the program on the remote simulator via RSP (using the GDB load) command.

A typical set of commands (once inside GDB) to debug a simple "Hello World" program on
Or1ksim on the same machine, with RSP connecting through port 51000 would be:

file hello_world
target remote :51000
load hello_world

At this point the usual GDB commands to breakpoint, continue and examine programs are
available. This includes symbolic disassembly of the code.

Note
GDB connecting through RSP with target remote is connecting to a target which is
already executing, but has stalled. Thus it is inappropriate to use the run command

21 Copyright © 2008 Embecosm Limited

(which specifies a new program to run). Instead the continue and step commands
are used.

The load command will reset the program counter to the entry point of the program.
So a subsequent continue will cause the newly loaded program to execute from
its entry point.

5.2. Debugging Linux
GDB can be used to debug Linux if required, but there are difficulties with handling virtual
addresses with a "bare metal" debugger. A page miss would require execution of the relevant
exception handler. As a consequence, all access via the current GDB implementation is to and
from physical addresses, bypassing caches and MMUs if present.

The eventual solution will be to port KGDB (kgdb.linsyssoft.com), which knows how to handle
memory in the kernel.

Sometimes just inserting printk statements is sufficient. The problem is that the kernel print
function, printk does not work until the serial driver is up and running. Problems earlier than
this (very likely during the early stages of porting) will be hidden.

The solution is to patch printk to use the internal simulator print facilities. Use of Or1ksim
simprintf direct from printk is not appropriate, since its argument is a pointer and at the
time of calling, the whole virtual memory system may be in flux.

However printk calls vprintk which does the complex work of building the final output string
from the format string and arguments. This string can then be printed a character at a time
using the Or1ksim NOP_PUTC feature. Since characters are passed in registers, not as pointers,
the issue of virtual memory does not arise.

The implementation of the printk can be found in kernel/printk.c in the Linux directory. In
there find the vprintk function. Immediately before it add two functions to write a string one
character at a time using the Or1ksim NOP_PUTC feature.

#define NOP_PUTC 4

static void simputc(char c)
{
 asm("l.or r3,r0,%0" : : "r" (c));
 asm("l.nop %0" : : "K" (NOP_PUTC));

} /* simputc() */

static void simputs(char *str)
{
 int i = 0;

 for(i = 0 ; str[i] != '\0' ; i++) {
 simputc(str[i]);
 }
} /* simputs() */

Then find the line in vprintk where the formatted string is constructed in the printk_buf:

kgdb.linsyssoft.com

22 Copyright © 2008 Embecosm Limited

 printed_len = vscnprintf(printk_buf, sizeof(printk_buf), fmt, args);

Immediately after this use the new simputs function to print this string to the console via
Or1ksim.

 simputs(printk_buf); /* For Or1ksim */

Rebuild Linux (see Section 3.4) and run again under the simulator. The Linux kernel output
will appear in the window from which the simulator was run.

 <... Or1ksim startup messages ...>

Copying Linux... Ok, booting the kernel.
****************** counters reset ******************
cycles 145321226, insn #9988651
****************** counters reset ******************
<5>Linux version 2.6.23-or32 (jeremy@thomas) (gcc version 3.4.4) #3 Sat Jun 28 1
9:30:06 BST 2008
Detecting Processor units:
 Signed 0x391
Setting up paging and PTEs.
write protecting ro sections (0xc0002000 - 0xc024c000)
Setting up identical mapping (0x80000000 - 0x90000000)
Setting up identical mapping (0x92000000 - 0x92002000)
Setting up identical mapping (0xb8070000 - 0xb8072000)
Setting up identical mapping (0x97000000 - 0x97002000)
Setting up identical mapping (0x99000000 - 0x9a000000)
Setting up identical mapping (0x93000000 - 0x93002000)

 <... Lots more kernel messages ...>

<5>VFS: Disk quotas dquot_6.5.1
Dquot-cache hash table entries: 2048 (order 0, 8192 bytes)
<6>Installing knfsd (copyright (C) 1996 okir@monad.swb.de).
<6>io scheduler noop registered
<6>io scheduler anticipatory registered (default)
<6>io scheduler deadline registered
<6>io scheduler cfq registered
<6>Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing disabled
<6>serial8250.0: ttyS0 at MMIO 0x90000000 (irq = 2) is a 16550A

 <... Serial I/O now working! ...>

init started: BusyBox v1.4.1 (2007-03-22 18:53:56 EST) multi-call binary
Starting pid 22, console /dev/ttyS0: '/etc/init.d/rcS'

The kernel does not lose messages, it saves them until serial I/O is available and then prints
them, so once the 8250 is initialized, everything will appear on the console and on the xterm
used by the Or1ksim UART.

That concludes this application note. Enjoy the tools!

23 Copyright © 2008 Embecosm Limited

Bibliography
[1] Debugging with GDB: The GNU Source-Level Debugger, Richard Stallman, Roland Pesch,

Stan Shebbs, et al, issue 9. Free Software Foundation 2008 . http://sourceware.org/
gdb/current/onlinedocs/gdb_toc.html

[2] Embecosm Application Note 3. Howto: Porting the GNU Debugger: Practical Experience
with the OpenRISC 1000 Architecture. Embecosm Limited, August 2008.

[3] Embecosm Application Note 4. Howto: GDB Remote Serial Protocol: Writing a RSP Server.
Embecosm Limited, November 2008.

[4] OpenRISC 1000: ORPSoC Damjan Lampret et al. OpenCores http://opencores.org/
projects.cgi/web/or1k/orpsoc

[5] SoC Debug Interface Igor Mohor, issue 3.0. OpenCores 14 April, 2004 . http://
opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf

http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf

24 Copyright © 2008 Embecosm Limited

Index
B
binutils, 5

building and installing, 6
configuration, 5
post-install setup, 7
source code generation, 5

C
configure script, 6

--prefix option, 6
--target option, 6

D
Debug Unit

JTAG interface, 8
Igor Mohor version, 8, 23
ORPSoC version, 8, 23

debugging strategies, 20
Linux using printk, 21
with GDB over RSP, 20

download locations, 3

E
Embecosm, 1

application notes, 1, 23, 23

G
GCC, 7

building and installing, 8
configuration, 7
rebuilding with uClibc and Linux, 12
source code generation, 7

GDB, 8
building and installing, 9
configuration, 9
Howto porting guide, 23, 23
source code generation, 9
User Guide, 23

GNU C Compiler (see GCC)
GNU Debugger (see GDB)

J
JTAG (see Debug Unit)

L
Linux, 9

building, 10
configuration, 10
debugging using printk, 21
running under Or1ksim, 17

configuring Or1ksim, 17
running, 17

source code generation, 10

O
obtaining the tool chain, 2

automated script, 2
legacy instructions, 2
virtual Ubuntu image, 2

OpenCores, 2
OpenRISC 1000

key features, 2
OpenRISC 1200, 2
Or1ksim, 13

bugs fixed, 14
building and installing, 15
configuration, 14
post-install setup, 15
source code generation, 14
test suite, 16

configuration, 16
running, 16

ORPSoC, 2

P
patch file

how to apply, 5
patch locations, 3

R
Remote JTAG Protocol (deprecated), 8
Remote Serial Protocol, 8, 13

S
source locations, 3

T
tool chain

components, 2

U
uClibc, 10

25 Copyright © 2008 Embecosm Limited

building and installing, 12
configuration, 11
source code generation, 11

uClinux, 6

	The OpenCores OpenRISC 1000 Simulator and Tool Chain
	Table of Contents
	Chapter 1. Introduction
	1.1. About Embecosm

	Chapter 2. About OpenRISC 1000
	2.1. Obtaining the OpenRISC 1000 Tool Chain
	2.2. Components of the OpenRISC 1000 Tool Chain
	2.3. Locations of Source and Patches

	Chapter 3. Building the Components
	3.1. GNU binutils Version 2.16.1
	3.1.1. Generating the binutils Source Code
	3.1.2. Configuring binutils
	3.1.3. Building and Installing binutils
	3.1.4. Setting up binutils

	3.2. GNU C Compiler Version 3.4.4 (Initial Version)
	3.2.1. Generating the GCC Source Code
	3.2.2. Configuring GCC
	3.2.3. Building and Installing GCC

	3.3. GNU Debugger Version 6.8
	3.3.1. Generating the GDB Source Code
	3.3.2. Configuring GDB
	3.3.3. Building and Installing GDB

	3.4. Linux Kernel Version 2.6.23
	3.4.1. Generating the Linux Source Code
	3.4.2. Configuring Linux
	3.4.3. Building Linux for the OpenRISC 1200

	3.5. uClibc Version 0.9.28.3
	3.5.1. Generating the uClibc Source
	3.5.2. Configuring uClibc
	3.5.3. Building and installing uClibc

	3.6. GNU C Compiler Version 3.4.4 (Linux and uClibc aware)
	3.6.1. Reconfiguring GCC
	3.6.2. Rebuilding GCC

	3.7. The Or1ksim Simulator
	3.7.1. Generating the Or1ksim Source
	3.7.2. Configuring Or1ksim
	3.7.3. Building and installing Or1ksim
	3.7.4. Setting up Or1ksim

	Chapter 4. Getting it All to Work!
	4.1. Running the Or1ksim Test Suite
	4.1.1. Configuring the Or1ksim Test Suite
	4.1.2. Running the Or1ksim Test Suite

	4.2. Linux with Or1ksim
	4.2.1. Configuring Or1ksim for use with Linux
	4.2.2. Running Linux on Or1ksim

	Chapter 5. Debugging Strategies
	5.1. Debugging using OpenRISC GDB via RSP and Or1ksim
	5.2. Debugging Linux

	Bibliography
	Index

