
Using JTAG with SystemC
Implementation of a Cycle Accurate Interface

Jeremy Bennett
Embecosm

Application Note 5. Issue 1
Published January 2009

http://www.embecosm.com

ii Copyright © 2009 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Jeremy Bennett of Embecosm

(www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

The software for the SystemC cycle accurate JTAG interface written by Embecosm and used
in this document is licensed under the GNU General Public License (GNU General Public
License). For detailed licensing information see the file COPYING in the source code.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

iii Copyright © 2009 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. Rationale .. 1
1.2. Target Audience .. 1
1.3. Further Sources of Information ... 1

1.3.1. Written Documentation .. 1
1.3.2. Other Information Channels ... 1

1.4. About Embecosm .. 2
2. Overview of Technologies ... 3

2.1. JTAG (IEEE 1149.1) ... 3
2.1.1. Boundary Scan .. 3
2.1.2. JTAG Chip Architecture ... 5

2.2. OSCI SystemC IEEE 1666 .. 8
3. Cycle Accurate SystemC JTAG Interface .. 10

3.1. Abstract Representation of the JTAG Interface .. 10
3.2. Application Programming Interface (API) .. 10

3.2.1. TAP Action Classes ... 10
3.2.2. The JtagSC SystemC Module Class .. 12
3.2.3. Using the Interface ... 14

3.3. Installation ... 14
3.4. Implementation Detail ... 14

3.4.1. JtagSC ... 15
3.4.2. TapAction ... 16
3.4.3. TapActionReset ... 16
3.4.4. TapActionIRScan .. 17
3.4.5. TapActionDRScan ... 18
3.4.6. TapStateMachine .. 21

4. Examples .. 23
4.1. JTAG Reset ... 23
4.2. Writing the Instruction Register .. 24
4.3. Writing a 12-bit JTAG Data Register ... 25
4.4. Reading a 73-bit JTAG Data Register .. 27

5. Summary .. 29
Glossary ... 30
References .. 32

iv Copyright © 2009 Embecosm Limited

List of Figures
2.1. Boundary scan example: two chips .. 3
2.2. Boundary scan example: chip interconnections .. 3
2.3. Boundary scan example: scan cells on inputs and outputs 4
2.4. Boundary scan example: scan cells connected .. 4
2.5. Boundary scan example: shift register .. 4
2.6. JTAG minimal architecture .. 5
2.7. TAP state machine ... 6
2.8. JTAG architecture with optional reset port and ID register .. 7
2.9. JTAG architecture with user registers .. 8
3.1. Class diagram for JtagAction and subclasses ... 10
3.2. State machine for the JtagActionIRScan process. ... 18
3.3. State machine for the JtagActionDRScan process. .. 20
4.1. Module structure for the ORPSoC JTAG example .. 23
4.2. VCD trace of a JTAG reset request ... 24
4.3. VCD trace of a JTAG instruction register write request ... 25
4.4. VCD trace of a "small" JTAG data register write request ... 26
4.5. VCD trace of a "large" JTAG data register read request ... 27

1 Copyright © 2009 Embecosm Limited

Chapter 1. Introduction
This document describes a cycle accurate SystemC interface for JTAG (IEEE 1149.1).

This interface simplifies a number of common practical problems:

• Interfacing to cycle accurate SystemC models created from RTL using tools such as
Verilator, ARC VTOC or Carbon Design Systems SpeedCompiler.

• Interfacing to traditional event driven simulators, such as Cadence NC, Synopsys VCS
and Mentor Graphics ModelSim using SystemC co-simulation.

• Implementing SystemC test benches which drive physical hardware via JTAG

• Interfacing to external tools such as debuggers. For example to develop versions of GDB
which can work through JTAG ports.

1.1. Rationale
Directly interfacing to the JTAG cycle accurate ports of a SystemC model is a complex task,
requiring careful modeling of the JTAG Test Access Port (TAP) state machine.

More abstractly JTAG is an interface allowing reading and writing of hardware registers.

The interface described in this application note provides this abstraction. The user queues
registers to be read or written, and the interface ensures the correct bit sequences are driven
on the JTAG pins. The interface is implemented as SystemC module with a FIFO on which the
user queues requests and signal ports to which the low level JTAG ports are connected.

A reference implementation is provided [2]. This application note gives a number of examples
of the interface in use (see Chapter 4).

1.2. Target Audience
If you need to interface SystemC to a cycle accurate or pin level model of a JTAG port, this
interface and application note is for you. If at the end of your endeavors you are better informed,
please help by adding to this document.

1.3. Further Sources of Information

1.3.1. Written Documentation
JTAG and SystemC are both IEEE standards (1149.1 and 1666 respectively), and the stan-
dardization documents are the ultimate reference. The SystemC standard [5] is a free PDF
download (a novelty for the IEEE), but the JTAG standard [3] costs money. The Texas Instru-
ments JTAG primer [4] is a useful free alternative.

The files making up the reference implementation for the JTAG SystemC interface are com-
prehensively commented, and can be processed with Doxygen [1]. Each class, member and
methods behavior, parameters and any return value is described.

1.3.2. Other Information Channels
There is a wealth of material to support both SystemC and JTAG on the Internet.

The Open SystemC Initiative (OSCI) provide an open source reference implementation of the
SystemC library, which includes tutorial material in its documentation directory. These may
be accessed from the OSCI website (www.systemc.org).

http://www.systemc.org

2 Copyright © 2009 Embecosm Limited

OSCI also provide a number of public mailing lists. The help forum and the community forum
are of particular relevance. Subscription is through the OSCI website (see above).

1.4. About Embecosm
Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services:

• Customization of open source tools and software, including porting to new architectures.

• Support, tutorials and training for open source tools and software.

• Custom software development for the embedded market, including bespoke software
models of hardware.

• Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

http://www.embecosm.com/

3 Copyright © 2009 Embecosm Limited

Chapter 2. Overview of Technologies
2.1. JTAG (IEEE 1149.1)
This section provides an introduction to IEEE 1149.1 [3] developed by the Joint Test Action
Group (JTAG).

JTAG was developed as interface to support boundary scan testing. However the resulting
interface has proved more generally useful as a way to get data into and out of registers in
hardware.

2.1.1. Boundary Scan
Boundary scan testing is a way of testing that the inputs and outputs of components on a
board, or sub-systems on a chip, are connected correctly.

Figure 2.1 shows a board with two chips, A and B, each with three inputs (numbered 1 to 3)
and three outputs (numbered 4 to 6).

4 65

1 32

Chip B

4 65

1 32

Chip A

Inputs

Inputs

Outputs

Outputs

Figure 2.1. Boundary scan example: two chips

These chips are interconnected as shown in Figure 2.2. Output pins 5 and 6 of chip A are
connected to the input pins 1 and 3 of chip B respectively. Output pins 4 and 6 of chip B are
connected to input pins 1 and 2 of chip A respectively. The other pins are not connected.

4 65

1 32

Chip B

4 65

1 32

Chip A

Inputs

Inputs

Outputs

Outputs

Figure 2.2. Boundary scan example: chip interconnections

The objective of boundary scanning is to determine that the inputs and outputs which should
be connected, are connected, and that those which should not be connected are not connected.

Boundary scan adds a simple logic cell (a scan cell) to each input and output, which can record
the current state of that input or output as shown in Figure 2.3.

4 Copyright © 2009 Embecosm Limited

4 65

1 32

Chip B

4 65

1 32

Chip A

Inputs

Inputs

Outputs

Outputs

Figure 2.3. Boundary scan example: scan cells on inputs and outputs

Normally the cell has no impact on the input or output. However the cells may be directed to
capture the current state of the input or output. For inputs, the signal about to leave the chip
is captured in the cell. For outputs, the signal about to enter the chip is captured in the cell.

The cells may also be directed to update their associated input or output. For inputs the stored
value is injected onto the external connection. For outputs the stored value is injected into
the chip.

Note
There is a single signal controlling all the cells. So they will all capture or update
their associated value at the same time.

The final component of boundary scan is to connect all the scan cells together in a chain, so
that each cell can transfer its value to the adjacent cell. This is shown in Figure 2.4.

4 65

1 32

Chip B

4 65

1 32

Chip A

Inputs

Inputs

Outputs

Outputs

Data In

Data Out

Figure 2.4. Boundary scan example: scan cells connected

The connected cells form a large shift register, with one bit for each input and output. The
cells may be directed to shift their value to the adjacent cell. A sequence of shifts allows all
the cells to be changed and all their values to be read out.

In the example shown, the cells form a 12-bit shift register, as shown in Figure 2.5.

A3 A A A A A B B B B B B2 1 4 5 6 3 2 1 4 5 6Bits shifted in Bits shifted out

Figure 2.5. Boundary scan example: shift register

A sequence of capture, followed by twelve shifts and then update allows the current state of
each input to be recorded externally, a new set of values to be set and then injected onto
the connections. In this way each input can be tested to check that when it is changed, its
connected output changes.

5 Copyright © 2009 Embecosm Limited

2.1.2. JTAG Chip Architecture
IEEE 1149.1 describes a simple architecture for chips implementing boundary scan testing.
In its minimal configuration, it provides four external pins, a clock (TCK), data in (TDI), data
out (TDO) and a management signal (TMS). Collectively these pins are known as the Test Access
Port (TAP).

Internally there are two registers in addition to the boundary scan register: the instruction
register and the bypass register. Figure 2.6 shows this minimal architecture.

Instruction Register

TAP
Controller

Bypass Register
TDI

TMS

TCK

TDO

Boundary Scan Register

Figure 2.6. JTAG minimal architecture
Bits are shifted in on the positive edge of TCK and shifted out on the negative edge. The TMS
signal is used to control the register into which the bits are shifted (instruction register, bypass
register or boundary scan register). TMS usage is described more fully below.

The basic cycle of operation is a sequence of capture a register, shift in a new value from TDI,
while simultaneously shifting out the old value on TDO, then update the register with the value
shifted in.

The TAP controller can shift values either through the instruction register or through one of
the other registers (collectively known as data registers). In the minimal configuration there
are only two data registers: the boundary scan register and the bypass register. The bypass
register is a convenient mechanism when boundary scan testing is not being used.

The instruction register must be at least 2 bits long. IEEE 1149.1 requires a minimum of 4
instructions:

BYPASS Capture, shift and update data through the bypass entry. This allows the
chip to continue its normal operation. IEEE 1149.1 requires this instruction
to consist of all 1's.

SAMPLE Capture and shift data through the boundary scan register, thus taking a
sample of the data entering and leaving the chip via its inputs and outputs.
However the update phase does not drive data onto inputs or outputs.

PRELOAD Shift data through the boundary scan register, thus setting up a value in the
scan cells for future use. For this instruction, the capture phase does not get

6 Copyright © 2009 Embecosm Limited

the previous value into the cell and the update phase does not drive data onto
inputs or outputs.
In early versions of the standard, this instruction was combined with SAMPLE.

EXTEST The chip is placed in extest mode before data is captured, shifted and updated
through the boundary scan register.
This is used to test connectivity between multiple chips. In extest mode the
chip does not try to drive outputs or accept inputs. It is normal to use PRELOAD
to set up the boundary scan register prior to EXTEST.

Early versions of IEEE 1149.1 required this instruction to consist of all 0's,
although this is not the case in more recent versions.

TAP State Machine
The TCK and TMS signals drive a finite state machine in the TAP controller. TMS is sampled on
the rising edge of TCK and used to advance the state. The state machine is shown in Figure 2.7.

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan Select-IR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

1 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

Figure 2.7. TAP state machine
The actions taken in each state are as follows:

Test-Logic-Reset In this state all test-modes (for example extest-mode) are reset, which
will disable their operation, allowing the chip to follow its normal oper-
ation.
At start-up the external logic will drive TMS high for at least 5 TCK cycles.
This guarantees to reach the Test-Logic-Reset state and remain there.

Run-Test/Idle This is the resting state during normal operation.

Select-DR-Scan
Select-IR-Scan

These are the starting states respectively for accessing one of the data
registers (the boundary-scan or bypass register in the minimal config-
uration) or the instruction register.

7 Copyright © 2009 Embecosm Limited

Capture-DR
Capture-IR

These capture the current value of one of the data registers or the in-
struction register respectively into the scan cells.
This is a slight misnomer for the instruction register, since it is usual
to capture status information, rather than the actual instruction with
Capture-IR.

Shift-DR
Shift-IR

Shift a bit in from TDI (on the rising edge of TCK) and out onto TDO (on
the falling edge of TCK) from the currently selected data or instruction
register respectively.

Exit1-DR
Exit1-IR

These are the exit states for the corresponding shift state. From here the
state machine can either enter a pause state or enter the update state.

Pause-DR
Pause-IR

Pause in shifting data into the data or instruction register. This allows
for example test equipment supplying TDO to reload buffers etc.

Exit2-DR
Exit2-IR

These are the exit states for the corresponding pause state. From here
the state machine can either resume shifting or enter the update state.

Update-DR
Update-IR

The value shifted into the scan cells during the previous states is driven
into the chip (from inputs) or onto the interconnect (for outputs).

So we have a simple state machine, which allows either data registers or the instruction reg-
ister to go through its capture-shift-update cycle, with an option to pause during the shifting.

Extending JTAG
IEEE 1149.1 specifies an optional asynchronous reset pin, TRST, an optional identification
register and a number of optional instructions that may be included. The extended architecture
is shown in Figure 2.8.

Instruction Register

Identification Register

TAP
Controller

Bypass Register
TDI

TMS

TCK

TDO

TRST

Boundary Scan Register

Figure 2.8. JTAG architecture with optional reset port and ID register

The reset pin, TRST, is active low. If driven low it immediately takes the state machine to the
Test-Logic-Reset state.

8 Copyright © 2009 Embecosm Limited

Note
If TRST is not present, a synchronous reset can always be achieved by driving TMS
high for 5 TCK cycles.

The device identification register is a 32-bit data register. It identifies version and part num-
ber for both manufacture and user. It can be read using the optional ICODE and USERCODE
instructions.

Additional instructions also support INTEST (like EXTEST, but with on-chip test data), RUNBIST
(to run comprehensive Built-in Self Test logic), CLAMP (to clamp outputs to predefined logic
levels) and HIGHZ (to set all outputs to the disabled (high impedance) state).

Adding User Specific Registers to JTAG
JTAG provides a generic mechanism for accessing registers on chip. The standard allows the
architecture to be extended with user registers, accessed using the user's own instructions.
Figure 2.9 shows how these registers may be added.

User Registers

Instruction Register

Identification Register

TAP
Controller

Bypass Register
TDI

TMS

TCK

TDO

TRST

Boundary Scan Register

Figure 2.9. JTAG architecture with user registers
The user will add their own instructions to access these additional registers. This is a common
mechanism to interface to debug units on modern system-on-chip (SoC) designs.

2.2. OSCI SystemC IEEE 1666
The development of SystemC as a standard for modeling hardware started in 1996. Version
2.0 of the proposed standard was released by the Open SystemC Initiative (OSCI) in 2002. In
2006, SystemC became IEEE standard 1666-2005 [5].

Most software languages are not particularly suited to modeling hardware systems1. SystemC
was developed to provide features that facilitate hardware modeling, particularly the paral-
lelism of hardware, in a mainstream programming language.

1 There are some exceptions, most notably Simula67, one of the languages which inspired C++. In some respects it
is remarkably like SystemC.

9 Copyright © 2009 Embecosm Limited

An important objective was that software engineers should be comfortable with using SystemC,
even though it is a hardware modeling language. Rather than invent a new language, SystemC
is based on the existing C++ language. SystemC is a true super-set of C++, so any C++ program
is automatically a valid SystemC program.

SystemC uses the template, macro and library features of C++ to extend the language. The
key features it provides are:

• A C++ class, sc_module, suitable for defining hardware modules containing parallel pro-
cesses.

Note
Process is a general term in SystemC to describe the various ways of repre-
senting parallel flows of control. It has nothing to do with processes in the
Linux or Microsoft Windows operating systems.

• A mechanism to define functions modeling the parallel threads of control within
sc_module classes;

• Two classes, sc_port and sc_export to represent points of connection to and from a
sc_module;

• A class, sc_interface to describe the software services required by a sc_port or provided
by a sc_export;

• A class, sc_prim_channel to represent the channel connecting ports;

• A set of derived classes, of sc_prim_channel, sc_interface, sc_port and sc_export to
represent and connect common channel types used in hardware design such as signals,
buffers and FIFOs; and

• A comprehensive set of types to represent data in both 2-state and 4-state logic.

The full specification is 441 pages long [5]. The OSCI reference distribution includes a very
useful introductory user guide and tutorial [7].

10 Copyright © 2009 Embecosm Limited

Chapter 3. Cycle Accurate SystemC JTAG
Interface
This interface is designed for modeling environments which are both cycle accurate and pin
accurate. In other words the state of each JTAG TAP port is accurately modeled on each bus
cycle.

The objective is to provide a level of abstraction, so the user can concentrate on the modeling
of register access through JTAG, rather than the minutiae of the TAP state machine and TAP
signal states

3.1. Abstract Representation of the JTAG Interface
JTAG offers fundamentally two operations: scan bits through the instruction register or scan
bits through a data register. The only other operation required is the ability to reset the TAP
controller.

The SystemC interface reflects this, with classes representing a TAP instruction register scan
(TapActionScanIR), a TAP data register scan (TapActionScanDR) and reset (TapActionReset).

The interface provides a SystemC module class representing the JTAG interface, JtagSC. The
user can queue IR scan, DR scan and reset operations and JtagSC will generate the correct
sequence of TAP pin outputs.

3.2. Application Programming Interface (API)

3.2.1. TAP Action Classes
TAP actions are represented by the abstract C++ class, TapAction. The three specific actions
for reset, scan IR and scan DR are sub-classed from this. Figure 3.1 shows this relationship
and summarizes the public interface as a class diagram.

TapActionDRScan()
getDRegOut()

TapActionDRScan

TapActionIRScan()
getIRegOut()

TapActionIRScan

TapActionReset()

TapActionReset

TapAction

Figure 3.1. Class diagram for JtagAction and subclasses

TapActionReset

This class represents a reset action for the TAP controller. There are no publicly accessible
member variables of this class. The public methods are:

•
TapActionReset (sc_core::sc_event *_doneEvent)

11 Copyright © 2009 Embecosm Limited

The constructor for new TAP reset actions. It is passed a pointer to a SystemC event in
_doneEvent, which will be notified when the action is complete.

TapActionIRScan

This class represents the action of scanning a value through the instruction register. There
are no publicly accessible member variables of this class. The public methods are:

•
TapActionIRScan (sc_core::sc_event *_doneEvent,
 uint32_t _iRegIn,
 int _iRegSize)

The constructor for new TAP IR scan actions. It is passed a pointer to a SystemC event
in _doneEvent, which will be notified when the action is complete.

The value to be scanned in (which will form the sequence of bits on TDI) is represented
as a 32-bit integer in iRegIn. The actual number of bits to be scanned is an integer in
_iRegSize.

32-bits seems a reasonable limit for the size of instruction register in any realistic JTAG
architecture.

•
uint32_t getIRegOut ();

On completion of the action (as signaled through the SystemC event pointed to by
_doneEvent this method will return the information that was scanned out of the instruc-
tion register. That is the sequence of bits that have appeared on TDO

As noted above, in the case of the instruction register this is not the actual value of the
instruction, but some status bits about the interface.

TapActionDRScan

This class represents the action of scanning a value through a data register. This is more
complex, because data registers are potentially very large—often larger than the 64-bits the
largest integer that can be held in a single C++ variable.

To support this, values are represented as an array of 64-bit unsigned integers (uint64_t).
However, for efficient handling of smaller data registers, variants are provided which represent
the register in a single 64-bit uint64_t.

There are no publicly accessible member variables of this class. The public methods are:

•
TapActionDRScan (sc_core::sc_event *_doneEvent,
 uint64_t _dRegInArray[],
 int _dRegSize)

The constructor for new DR scan actions. It is passed a SystemC event in _doneEvent,
which will be notified when the action is complete.

The value to be scanned in (which will form the sequence of bits on TDI) is represented
as an array of 64-bit unsigned integers in dRegInArray. The actual number of bits to be
scanned is an integer in _dRegSize.

12 Copyright © 2009 Embecosm Limited

This interface allows data registers of any size to be handled. However if this constructor
is used for a small value it will automatically use the more efficient constructor described
next.

•
TapActionDRScan (sc_core::sc_event *_doneEvent,
 uint64_t _dRegIn,
 int _dRegSize)

An alternative constructor for smaller registers (up to 64-bits). This is for use where the
data to be scanned in is up to 64-bits long. It can be used for larger registers, so long
as the actual value to be scanned in is only 64 bits or fewer.

The constructor is passed a SystemC event in _doneEvent, which will be notified when
the action is complete.

The value to be scanned in (which will form the sequence of bits on TDI) is supplied
as a 64-bit unsigned integer in dRegIn. The actual number of bits to be scanned is an
integer in _dRegSize.

•
~TapActionDRScan ()

The destructor for DR scan actions. When handling more than 64 bits, arrays are allo-
cated for internal data. If such arrays have been created, the destructor deletes them.

•
void getDRegOut (uint64_t dRegArray[])

On completion of the action (as signaled through the SystemC event pointed to by
_doneEvent this method will return the information that was scanned out of the instruc-
tion register. That is, the sequence of bits that have appeared on TDO

The result is copied into the uint64_t array supplied in dRegArray. This interface can
be used, even if this is a small register that can be held in a single variable. The result
will be copied into dRegArray[0].

•
uint64_t getDRegOut ();

On completion of the action (as signaled through the SystemC event pointed to by
_doneEvent this method will return the information that was scanned out of the instruc-
tion register. That is, the sequence of bits that have appeared on TDO.

The value returned can be no larger than 64-bits. However this call may be used with a
larger data register, in which case it will return the least significant 64 bits.

3.2.2. The JtagSC SystemC Module Class
This SystemC module class provides the primary interface. Users can queue instances of
TapAction on its FIFO and it will generate the correct sequence of JTAG tap pin signals.

JtasSC defines a set of signal ports to connect to the target model implementing JTAG

•

13 Copyright © 2009 Embecosm Limited

sc_core::sc_in<bool> sysReset

Input. The system wide reset signal (active high). Whenever this is active JtagSC will drive
the TRST signal to its active state (low).

•
sc_core::sc_in<bool> tck

Input. The JTAG clock signal. This must be synchronous with the TCK signals to con-
nected devices implementing JTAG

•
sc_core::sc_out<bool> tdi

Output. The TDI signal. For JtagSC it is an output, because this class is generating the
required signals on TDI from the actions which have been queued.

•
sc_core::sc_in<bool> tdo

Input. The TDO signal. For JtagSC it is an output from which the result of the actions
which have been queued is built up

•
sc_core::sc_out<bool> tms

Output. The TMS signal. For JtagSC it is an output, because this class is generating the re-
quired signals to drive the TAP state machine from the actions which have been queued.

•
sc_core::sc_out<bool> trst

Output. The TRST signal. Driven low (active) whenever the system reset (sysReset) is active
(high). For JtagSC it is an output, because this class generates the reset when required.

Users connecting to modules which do not implement TRST should tie this off to a dummy
signal

JtasSC defines a FIFO on which users queue JTAG actions.

•
sc_core::sc_fifo<TapAction *> *tapActionQueue

The JTAG actions are of type TapAction and its subclasses. Over successive TCK cycles,
the JtagSC will generate the required TMS and TDI signals and capture the TDO signals.
When complete the SystemC sc_event from the action's creation is signaled.

The public methods of JtagSC are:

•
JtagSC (sc_core::sc_module_name name,
 int fifo_size = DEFAULT_TAP_FIFO_SIZE)

14 Copyright © 2009 Embecosm Limited

The constructor of new JTAG modules. The first argument, name, like all SystemC mod-
ules, is the name of the module. The optional second argument specifies the size of FIFO
on which actions may be queued. Its default value, DEFAULT_TAP_FIFO_SIZE is 256 in the
current implementation.

•
~JtagSC ()

The destructor for JTAG modules. This deletes the FIFO and a number of internal data
structures.

3.2.3. Using the Interface

The user should instantiate an instance of JtagSC for each JTAG interface on the target model.
The JtagSC ports should be connected to the system reset and TAP signal ports on the model
using SystemC signals of type sc_signal<bool>.

Other SystemC modules may then queue actions by writing instances of TapActionReset,
TapActionIRScan and TapActionDRScan to the JtagSC FIFO. This is normally within the context
of a SC_THREAD, allowing the module to wait for notification when each action is complete.

3.3. Installation
The current implementation has been verified under Fedora 9 Linux using OSCI SystemC 2.2
and GCC 4.3.0. The author welcomes feedback about use under other operating systems.

• Unpack the source file, and change to the directory where the source is unpacked.

jxf embecosm-esp4-sysc-jtag-ca-1.0.tar.bz2
cd embecosm-esp4-sysc-jtag-ca-1.0

• Ensure the environment variable SYSTEMC is set to point to your SystemC distribution.

• Build the cycle accurate SystemC JTAG library.

make

• In the current implementation, there is no make install. Copy the resulting libjtagsc.a
library and jtagsc.h header to the library and header directories of choice if desired.

To use the library, add the header directory to the GCC preprocessor flags and the library
directory and library to the final linking command line. For example.

gcc -Iembecosm-esp4-sysc-jtag-ca-1.0 testprog.cpp
gdd -Lembecosm-esp4-sysc-jtag-ca-1.0 testprog.o -ljtagsc -o testprog

3.4. Implementation Detail
Each class described in the API is implemented as a header file defining the class and a code
file with implementation of all the methods. So the class JtagSC is defined in JtagSC.h and
implemented in JtagSC.cpp.

15 Copyright © 2009 Embecosm Limited

In addition to the classes described in Section 3.2, there is one more class, TapStateMachine,
implementing the behavior of the TAP state machine.

The following sections provide brief notes on the implementation of each class.

3.4.1. JtagSC

In addition to the public instance variables which form part of the API, the main JTAG module
maintains some private state.

•
TapStateMachine *stateMachine

This is an instance of the TAP state machine class (see Section 3.4.6), modeling the TAP
state machine in the target to which this module is connected.

•
TapAction *currentTapAction

This is the JTAG action currently being processed through the TAP state machine. It
has already been read from the FIFO.

Constructor and Destructor Implementation
The constructor initializes the current TAP action (currentTapAction) to NULL and allocates
new instances of the FIFO (sc_fifo) and the TAP state machine (TapStateMachine).

It also declares the protected method processActions to be a SystemC method (SC_METHOD),
sensitive to the rising TCK (tck.pos()). It is this method that is responsible for progressing the
queued actions on each clock cycle.

The destructor deletes the FIFO and TAP state machine to free the memory on completion.

processActions

This function is declared in the constructor as a SystemC SC_METHOD. It is invoked on every
rising edge of TCK.

TRST takes its value as the inverse of the System reset (since it is active low, while the latter is
active high). If the system is in reset, there is nothing else to do and the method returns.

If there is no TAP action currently being processed (i.e. currentTapAction is NULL) then the
method attempts a non-blocking read from the FIFO.

If no new action is available from the FIFO, then TMS is driven to the appropriate state to move
towards the Run-Test/Idle state and the method returns.

Having obtained (or already in progress of) a TAP action, its process method is invoked. This
takes the current state machine and TDO and returns (via parameters) new values of TDI and
TMS. It returns success if this completes the action.

In the event of successful completion, the SystemC event associated with the action is notified,
and currentTapAction marked null, so a new action will be obtained from the FIFO on the
next cycle.

The state machine is then advanced to its next state (based on the value of TMS), and the values
of TMS and TDI used to drive the SystemC signals in tdi_o and tms_o.

16 Copyright © 2009 Embecosm Limited

Note
This function is only called on the positive edge of the clock, although TDO changes
on the negative edge. However the value will still be there at the positive edge in
all practical designs, so an additional call (with the associated computational over-
head) is not required.

3.4.2. TapAction
This is the abstract base class of all the TAP action classes. It provides the common interface,
expected by JtagSC.

JtagSC is declared a friend class and the pure virtual process method is made protected. This
method can therefore be called by JtagSC, but not by other users of the class. Subclasses of
TapAction are expected to implement this method.

Although there are no public instance variables which form part of the API, TapAction main-
tains some private state.

•
sc_core::sc_event *doneEvent

The SystemC event which will be notified when an action completes.

•
int resetCounter

A counter for use when resetting the TAP state machine of the target through checkRe-
setDone (see below).

In addition to the pure virtual process method, TapAction provides the function checkReset-
Done (see below) as a utility for its subclasses.

checkResetDone

The TapActionIRScan and TapActionDRScan subclasses rely on the TAP state machine in JtagSC
being an accurate reflection of the TAP state machine in the target. This can only be the case
if both have been through a synchronous reset cycle (5 or more TMS=1 cycles).

The TRST signal cannot be used as a guide, since it is an optional signal, which may not be
implemented by targets.

Instead the TAP state machine class, TapStateMachine records whether it has been through a
reset cycle. It relies on other classes to use (and set) this information as is helpful.

Both TapActionIRScan and TapActionDRScan check this information, and if necessary force the
state machine through a reset to synchronize with the model.

This method is a utility to provide that function for subclasses. A subtlety of its implementation
is that it sets the value of the TAP state machine flag as soon as it has provided the final (fifth)
TMS signal, but does not return true to indicate no reset is needed until its subsequent call. This
allows users to distinguish whether they are about to complete reset, or have already completed
it in the previous TCK cycle. This in turn allows the method to provide the functionality for
TapActionReset.

3.4.3. TapActionReset
This is the simplest of the TapAction subclasses, implementing a JTAG reset cycle. It has a
sole private instance variable.

17 Copyright © 2009 Embecosm Limited

•
bool firstTime

This is used to track the first call of the process method.

Constructor
The constructor's key action is to set the firstTime instance variable to true.

process

On the first cycle through, the TAP state machine's resetDone flag is cleared.

This allows the base class checkResetDone method to be used to drive the reset.

In this case completion is when the TAP state machine records the reset is done, not when
the checkResetDone function returns true. This means completion is signaled on the final
reset cycle, rather than after the final reset cycle. See Section 3.4.2 for the explanation of this
behavior.

3.4.4. TapActionIRScan
This class implements capture, shift and update of a value through the instruction register.
It has a number of private instance variables.

•
uint32_t iRegIn

This is the value being shifted in through TDI. It holds the remaining bits to be shifted.

•
int iRegSize

This is the number of bits to be shifted in through TDI and out through TDO

•
uint32_t iRegOut

This is the value being shifted out through TDO. It holds the bits shifted out so far.

•
int bitsShifted

The number of bits shifted in so far.

•
enum {
 SHIFT_IR_PREPARING,
 SHIFT_IR_SHIFTING,
 SHIFT_IR_UPDATING
 } iRScanState

This enumeration records where the action is in its process. The process method follows
a state machine (see below) whose state is recorded here.

18 Copyright © 2009 Embecosm Limited

Constructor
The primary responsibility of the constructor is to initialize all the instance variables. The
input register and size are taken from the arguments, the output register and count of bits
shifted are zeroed and the IR-Scan process state machine is set to SHIFT_IR_PREPARING.

process

This method generates the appropriate values of TDI and TMS to process the action and capture
TDI. It is controlled by its own state machine, whose state is recorded in iRScanState as shown
in Figure 3.2

SHIFT_IR_PREPARING

SHIFT_IR_SHIFTING

SHIFT_IR_UPDATING

TAP state machine
is synchronized

TAP state machine
is at Shift-IR

All bits shifted
through TDI

TAP state machine
is at Update-IR

Advance TAP state
machine to Shift-IR

Shift bits out of TDI
and in from TDO

Advance TAP state
machine to Update-IR

Shift in last TDO bit

Figure 3.2. State machine for the JtagActionIRScan process.

A subtlety of the implementation is that, because TDO changes on the falling edge, its value is
always one step later than that of TDI. Thus TDO is not captured on the first cycle in Shift-IR
state and its last bit is captured immediately after leaving Shift-IR state.

getIRegOut

This function is part of the public API, allowing the user to access the value shifted through
TDO on completion.

3.4.5. TapActionDRScan
This class implements capture, shift and update of a value through a data register. Function-
ally it is very similar to TapActionIRScan. However complexity is added, because data registers
may be too large for a single C++ variable, so must be represented in arrays. TapActionDRScan
has a number of private instance variables.

•
int dRegBitSize

This is the number of bits to be shifted in through TDI and out through TDO.

19 Copyright © 2009 Embecosm Limited

•
int dRegWordSize

If dRegBitSize is more than 64, this is the number of elements in the uint64_t array used
to represent the input and output registers, with the least significant bits in element 0.

•
uint64_t topMask

If register values are held in an array (i.e. dRegBitSize is more than 64), any odd number
of bits (if dRegBitSize is not an exact multiple of 64) are held in the most significant
element of the array. This is a mask for those bits.

•
uint64_t *dRegInArray

When the registers are held in an array (i.e. dRegBitSize is more than 64), this is a
pointer to the array representing the value being shifted in through TDI. It holds the
remaining bits to be shifted.

Since the original value is destroyed during processing, this is a copy of the array sup-
plying the original value to the constructor.

•
uint64_t dRegIn

If the number of bits in a register (held in dRegBitSize) is 64 or less, the value to be
shifted through TDI can be held in this simple variable for efficiency.

•
uint64_t *dRegOutArray

When the registers are held in an array (i.e. dRegBitSize is more than 64), this is a
pointer to the array representing the value being shifted out through TDO. It holds the
bits shifted out so far.

•
uint64_t dRegOut

If the number of bits in a register (held in dRegBitSize) is 64 or less, the value being
shifted out through TDO can be held in this simple variable for efficiency.

•
int bitsShifted

The number of bits shifted in so far.

•
enum {
 SHIFT_DR_PREPARING,
 SHIFT_DR_SHIFTING,
 SHIFT_DR_UPDATING
} dRScanState

20 Copyright © 2009 Embecosm Limited

This enumeration records where the action is in its process. The process method follows
a state machine (see below) whose state is recorded here.

Constructors and destructor
As with the instruction register, the primary responsibility of the constructor is to initialize all
the instance variables. The register size is taken from the arguments, the count of bits shifted
is zeroed and the DR-Scan process state machine is set to SHIFT_DR_PREPARING.

There are two variants depending on whether the value to be shifted in through TDO is small
enough to fit in a single 64-bit variable.

In either case, if the number of bits in the register size is greater than 64, the registers will be
represented as an array of uint64_t. Otherwise they will be represented as simple uint64_t
variables for efficiency.

Where registers are represented as vectors, new vectors of the correct size are allocated and
the supplied input value copied to the input register. The output register is zeroed. The size
of the vectors is recorded in dRegWordSize.

Otherwise the input value is copied to the local instance variable (dRegIn) and the output value
(dRegOut) is zeroed.

The destructor is used to delete the local copies of registers where they have been represented
as arrays to free the memory.

process

As with TapActionIRScan, this method generates the appropriate values of TDI and TMS to
process the action and capture TDI. It is controlled by its own state machine, whose state is
recorded in iRScanState as shown in Figure 3.3

SHIFT_DR_PREPARING

SHIFT_DR_SHIFTING

SHIFT_DR_UPDATING

TAP state machine
is synchronized

TAP state machine
is at Shift-DR

All bits shifted
through TDI

TAP state machine
is at Update-DR

Advance TAP state
machine to Shift-DR

Shift bits out of TDI
and in from TDO

Advance TAP state
machine to Update-DR

Shift in last TDO bit

Figure 3.3. State machine for the JtagActionDRScan process.

21 Copyright © 2009 Embecosm Limited

The operations on the registers vary depending on whether the register is more than 64 bits
long. These operations (to shift bits out for TDI and in from TDO) are placed in separate utility
functions, shiftDRegOut and shiftDRegIn (see below).

getDRegOut

This function is part of the public API, allowing the user to access the value shifted through
TDO on completion.

It is provided in two versions. In the first, the result is copied to an array of uint64_t provided
as an argument. This version may be used even if the register is 64 bits or smaller. The value
will be copied into element 0 of the array.

The second version returns the value as a uint64_t. This version may be used, even if the
register is more than 64 bits long. The least significant 64 bits will be returned.

shiftDRegOut and shiftDRegIn
These functions are used to shift the least significant bit out of dRegInArray (for use as TDI)
and the shift in the most significant bit (from TDO) of dRegOutArray. However if the data register
is represented as a scalar uint64_t variable they will perform the equivalent operation on
DRegIn and DRegOut instead.

3.4.6. TapStateMachine

This class is for internal use by JtagSC and the various TAP action classes. It maintains the
interface's model of the state machine in the TAP Controller.

The header defining this class also defines enum TapState for the various states of the TAP
state machine.

TapStateMachine has a number of private instance variables.

•
TapState state

The current state.

•
bool resetDone

The TAP state machine is only of use if it correctly reflects the state machine in the TAP
Controller of the target. This flag may be set and read by users to reflect whether the
two are in synchrony (for example having gone through a sequence of 5 or more TMS=1
transitions).

Constructor
The constructor initializes the state to Test-Logic-Reset and clears the flag indicating the TAP
controller has been reset. Until a reset has been completed, there can be no confidence that
the state is a correct reflection of reality.

Accessor Functions
The functions getState is provided to get the current state. The functions getResetDone and
setResetDone are provided to access the flag indicating whether a reset has been completed.
Although initialized to false, it is the responsibility of users to set this flag to its correct value.

22 Copyright © 2009 Embecosm Limited

nextState

This uses table lookup to advance the state, based on the supplied value of TMS.

targetState

This function returns through its second argument a value of TMS which will move from the
current state to the specified target state most efficiently (i.e. smallest number of steps). Table
lookup makes this an efficient function.

The return value indicates if the state machine was already in the target state.

This function is used by the instruction and data scan TAP action classes to get to the correct
state during their process functions.

23 Copyright © 2009 Embecosm Limited

Chapter 4. Examples
Both examples in this chapter use the OpenRISC Reference Platform System-on-Chip, ORPSoC
([6]). A cycle accurate SystemC model was generated automatically from the source using
Verilator ([8]).

ORPSoC features a JTAG interface with a number of user register which drive its debug unit.
These examples show the result of resetting the unit, writing a register less than 64-bits long
and reading a register more than 64-bits long.

The SystemC model consists of four modules: the ORPSoC module created by Verilator (class
Vorpsoc), a reset signal generator (class ResetSC), the JTAG module using the interface de-
scribed in this application note (class jtagSC) and a simple driver module to inject JTAG re-
quests (class JtagDriver). The module structure and their interconnects are shown in Fig-
ure 4.1.

ResetSC
Vorpsoc

clk

rstn

jtag_tck

jtag_tdi

jtag_tms

jtag_trst

jtag_tdo

JtagSC
sysReset

tck

tdo

tdi
tms

trst
tapActionQueue

clk

rst

rstn

JtagDriver
tapActionQueue

clk

Figure 4.1. Module structure for the ORPSoC JTAG example

The clock is provided by a sc_clock and used to drive both the system clock of ORPSoC and
the JTAG TCK signals. The reset generator, ResetSC generates a reset signal for a predefined
number of clock cycles after time zero. The two outputs offer active high (rst) and active low
(rstn) versions, synchronous with each other.

4.1. JTAG Reset
The code to drive reset of the JTAG is as follows.

sc_core::sc_event *actionDone = new sc_core::sc_event();
TapActionReset *resetAction;

resetAction = new TapActionReset (actionDone);
tapActionQueue->write (resetAction);
wait (*actionDone);

delete resetAction;
delete actionDone;

A new instance of TapActionReset, resetAction is created using the SystemC event, action-
Done. This action is queued by writing to the FIFO (tapActionQueue, waiting for the result on
actionDone.

24 Copyright © 2009 Embecosm Limited

With the results traced in a VCD the effect can be seen clearly. The trace is shown in Figure 4.2.

Figure 4.2. VCD trace of a JTAG reset request

During system reset, the JTAG TRST is driven low. As soon as the system reset is complete
at 1μs, the JTAG reset can be processed. A sequence of 5 cycles of TMS=1 is seen from 1μs
onwards.

Note
The VCD trace shows the signals changing on the falling edge of the clock. This is a
cycle accurate model, with values only sampled on clock edges. The JTAG signals
change in response to the stimulus from the clock, so only appear in the trace at
the next clock edge. This is a common effect in cycle accurate modeling, but does
not affect the behavior of the model.

4.2. Writing the Instruction Register
The ORPSoC JTAG interface uses a 4-bit instruction register with a number of custom instruc-
tions. One such instruction CHAIN is used to select the custom CHAIN register. This instruction
has the binary value 0011.

The code to write the CHAIN instruction into the instruction register is:

sc_core::sc_event *actionDone = new sc_core::sc_event();
TapActionIRScan *iRScan;

iRScan = new TapActionIRScan (actionDone, CHAIN_SELECT_IR, JTAG_IR_LEN);
tapActionQueue->write (iRScan);
wait (*actionDone);

delete iRScan;

25 Copyright © 2009 Embecosm Limited

The action is created as a new instance of TapActionIRScan, passing in a SystemC event for
signaling completion, with the value of the instruction (CHAIN_SELECT_IR, binary 0011) and
the instruction register length (JTAG_IR_LEN, 4 in the case of ORPSoC).

Note
In this case the SystemC event, actionDone is not deleted. It will be reused for the
following data register write action (see Section 4.3).

The results are again traced in a VCD and shown in Figure 4.3.

Figure 4.3. VCD trace of a JTAG instruction register write request

The instruction register write action commences at 1.6μs. A sequence of 0-1-1-0-0 on TMS
takes the state machine from its starting point of Test-Logic-Reset through Run-Test/Idle,
Select-DR-Scan, Select-IR-Scan and Capture-IR to Shift-IR.

At this point a sequence of four TMS=0, starting at 2.0μs allow the bits of the instruction
register to be shifted in from TDI. The sequence 1-1-0-0 can be seen on jtag_tdi. Since the
bits are shifted in least-significant bit first, this represents the binary number 0011, the CHAIN
instruction.

A sequence of 1-1 on TMS moves the state machine through Exit1-IR to Update-IR at which
point completion is signaled (2.5μs).

4.3. Writing a 12-bit JTAG Data Register
The ORPSoC JTAG CHAIN instruction selects the debug unit's 12-bit CHAIN register as the
data register to be written.

The code to write the data into the CHAIN data register is:

uint64_t dReg = 0x4;
dReg |= crc8 (chain, 4) << 4;

26 Copyright © 2009 Embecosm Limited

dRScan = new TapActionDRScan (actionDone, dReg, 12);
tapActionQueue->write (dRScan);
wait (*actionDone);

delete dRScan;
delete actionDone;

The 12-bit data is built up in dReg from a value (bits 0-3) and a CRC (bits 4-11). The action
is created as a new instance of TapActionDRScan, passing in a SystemC event for signaling
completion (reusing the signal from the instruction register write earlier), with the data value
and the data register length. In this example the 12-bit value is 0000_1110_0100.

The results are again traced in a VCD and shown in Figure 4.4.

Figure 4.4. VCD trace of a "small" JTAG data register write request

The data register write action commences at 2.6μs. The TAP state machine is currently at
Update-IR from the previous write of an instruction register. A TMS sequence of 1-0-0 takes the
state through Select-DR-Scan and Capture-DR to Shift-DR. 12 cycles in Shift-DR (the last with
TMS=1 to move out of Shift-DR) starting at 2.9μs shift in the sequence 0-0-1-0-0-1-1-1-0-0-0-0
on TDI, the value specified, least significant bit first. The final TMS=1 moves the state to Ex-
it1-DR, followed by another TMS=1 to move to Update-DR. Completion can be signaled at this
point, at time 4.1μs.

In this example the bits being shifted out on TDO can also be seen. The ORPSoC debug unit
always shifts out the CRC as the last 8-bits, and the sequence 0-1-1-1-0-0-0-0 can be seen as
the final bits on TDO, which is the original 8-bit CRC (00001110) in least significant bit first.

Note how the bits are delayed half a cycle from the TDI bits, because TDO changes on the falling
edge of TCK (and on this cycle accurate trace will be shown on the following rising edge). Thus
the final bit is picked up as the Exit1-DR state is entered.

27 Copyright © 2009 Embecosm Limited

4.4. Reading a 73-bit JTAG Data Register
This final example shows the JTAG interface's facilities for handling large data registers. This
example shows a read from one of the ORPSoC JTAG 73-bit debug registers

The code to read a register also involves scanning in data, and for ORPSoC that data must
have a correct CRC to be accepted. The code is as follows:

sc_core::sc_event *actionDone = new sc_core::sc_event();
uint64_t dRegArray[2];
memset (dRegArray, 0, 16);
dRegArray[0] |= data;
uint8_t crc_in = crc8 (dRegArray, 65);
insertBits (crc_in, 8, dRegArray, 65);

TapActionDRScan *dRScan = new TapActionDRScan (actionDone, dRegArray, 73);
tapActionQueue->write (dRScan);
wait (*actionDone);

dRScan->getDRegOut (dRegArray);
delete dRScan;
delete actionDone;

The 73-bit data is built up in the array dRegArray from a value (bits 0-64) and a CRC (bits
65-72). The action is created as a new instance of TapActionDRScan, passing in a SystemC
event for signaling completion, with the data value array and the data register length.

After completion, the result is retrieved back into dRegArray using the getDRegOut method of
the TapActionDRScan class.

The results are again traced in a VCD and shown in Figure 4.5.

Figure 4.5. VCD trace of a "large" JTAG data register read request

28 Copyright © 2009 Embecosm Limited

The data register read action commences at 23.4μs. The TAP state machine is currently at
Update-IR from the previous write of an instruction register. A TMS sequence of 1-0-0 takes
the state through Select-DR-Scan and Capture-DR to Shift-DR. There are then 73 cycles in
Shift-DR (the last with TMS=1 to move out of Shift-DR) starting at 23.7μs. The value is shifted
out least significant bit first on TDO (one cycle delayed, since it is on the negative edge). The
value is 0x0620000000200000000.

The final TMS=1 moves the state to Exit1-DR, followed by another TMS=1 to move to Update-DR.
Completion can be signaled at this point, at time 31.1μs.

29 Copyright © 2009 Embecosm Limited

Chapter 5. Summary
This application note presents a SystemC interface suitable for cycle accurate modeling of
JTAG. It will be of value to engineers developing cycle accurate models, who need to interface
to other modules, to develop test benches, or to connect to tools such as debuggers.

Suggestions for corrections or improvements are welcomed. Please contact the author at
jeremy.bennett@embecosm.com.

mailto:jeremy.bennett@embecosm.com

30 Copyright © 2009 Embecosm Limited

Glossary

2-state
Hardware logic model which is based only on logic high and logic low (binary 0 and binary
1) values.
See also: 4-state.

4-state
Hardware logic model which considers unknown (X) and unproven (Z) values as well as
logic high and logic low (binary 0 and binary 1).
See also: 2-state.

big endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a big endian architecture, the least significant byte in a data word resides at
the highest byte address (of the bytes in the word) in memory.
The alternative is little endian addressing.

See also: little endian.

Joint Test Action Group (JTAG)
JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access
Port and Boundary-Scan Architecture for test access ports used for testing printed circuit
boards and chips using boundary scan.
This standard allows external reading of state within the board or chip. It is thus a natural
mechanism for debuggers to connect to embedded systems.

little endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a little endian architecture, the least significant byte in a data word resides at
the lowest byte address (of the bytes in the word) in memory.
The alternative is big endian addressing.

See also: big endian.

Open SystemC Initiative (OSCI)
The industry standardization body for SystemC/

System on Chip (SoC)
A silicon chip which includes one or more processor cores.

SystemC
A set of libraries and macros, which extend the C++ programming language to facilitate
modeling of hardware.
Standardized by the Open SystemC Initiative, who provide an open source reference im-
plementation.

See also: Open SystemC Initiative.

31 Copyright © 2009 Embecosm Limited

Test Access Port (TAP)
The interface to a JTAG interface defined by IEEE 1149.1.

32 Copyright © 2009 Embecosm Limited

References
[1] Doxygen: Source code documentation generator tool, Dimitri van Heesch, 2008 . http://

www.doxygen.org

[2] Embecosm Software Package 4. Cycle Accurate SystemC JTAG Interface: Reference Imple-
mentation. Embecosm Limited, January 2009. Available for free download from the
Embecosm website at www.embecosm.com .

[3] IEEE standard test access port and boundary-scan architecture IEEE Computer Society
2001 (reaffirmed 2008) . IEEE Std 1149.1™-2001 .

[4] IEEE Std 1149.1 (JTAG) Testability: Primer. Texas Instruments Semiconductor Group
1997. Available for free download from the Texas Instruments website at focus.ti.com/
lit/an/ssya002d/ssya002d.pdf .

[5] IEEE Standard SystemC® Language: Reference Manual. IEEE Computer Society
2005 . IEEE Std 1666™-2005. Available for free download from standards.ieee.org/
getieee/1666/index.html .

[6] The OpenRISC Reference Platform System-on-Chip ORSoC AB (through the OpenCores
website) www.opencores.org

[7] SystemC Version 2.0 User Guide. Open SystemC Initiative, 2002.

[8] Verilator 3.700. Wilson Snyder, January 2009. Veripool, www.veripool.org/wiki/ver-
ilator

http://www.doxygen.org
http://www.doxygen.org
http://www.embecosm.com
http://focus.ti.com/lit/an/ssya002d/ssya002d.pdf
http://focus.ti.com/lit/an/ssya002d/ssya002d.pdf
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://www.opencores.org
http://www.veripool.org/wiki/verilator
http://www.veripool.org/wiki/verilator

	Using JTAG with SystemC
	Table of Contents
	Chapter 1. Introduction
	1.1. Rationale
	1.2. Target Audience
	1.3. Further Sources of Information
	1.3.1. Written Documentation
	1.3.2. Other Information Channels

	1.4. About Embecosm

	Chapter 2. Overview of Technologies
	2.1. JTAG (IEEE 1149.1)
	2.1.1. Boundary Scan
	2.1.2. JTAG Chip Architecture
	TAP State Machine
	Extending JTAG
	Adding User Specific Registers to JTAG

	2.2. OSCI SystemC IEEE 1666

	Chapter 3. Cycle Accurate SystemC JTAG Interface
	3.1. Abstract Representation of the JTAG Interface
	3.2. Application Programming Interface (API)
	3.2.1. TAP Action Classes
	TapActionReset
	TapActionIRScan
	TapActionDRScan

	3.2.2. The JtagSC SystemC Module Class
	3.2.3. Using the Interface

	3.3. Installation
	3.4. Implementation Detail
	3.4.1. JtagSC
	Constructor and Destructor Implementation
	processActions

	3.4.2. TapAction
	checkResetDone

	3.4.3. TapActionReset
	Constructor
	process

	3.4.4. TapActionIRScan
	Constructor
	process
	getIRegOut

	3.4.5. TapActionDRScan
	Constructors and destructor
	process
	getDRegOut
	shiftDRegOut and shiftDRegIn

	3.4.6. TapStateMachine
	Constructor
	Accessor Functions
	nextState
	targetState

	Chapter 4. Examples
	4.1. JTAG Reset
	4.2. Writing the Instruction Register
	4.3. Writing a 12-bit JTAG Data Register
	4.4. Reading a 73-bit JTAG Data Register

	Chapter 5. Summary
	Glossary
	References

