Integrating the GNU Debugger
with Cycle Accurate Models

A Case Study using a Verilator
SystemC Model of the OpenRISC 1000

Jeremy Bennett
Embecosm

Application Note 7. Issue 1
Published March 2009

http://www.embecosm.com

ECOSM

Legal Notice

This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
. to copy, distribute, display, and perform the work

. to make derivative works

under the following conditions:
. Attribution. You must give the original author, Jeremy Bennett of Embecosm
(www.embecosm.com), credit;

. For any reuse or distribution, you must make clear to others the license terms of this
work;
. Any of these conditions can be waived if you get permission from the copyright holder,

Embecosm; and
. Nothing in this license impairs or restricts the author's moral rights.

The software for the SystemC cycle accurate model written by Embecosm and used in this
document is licensed under the GNU General Public License (GNU General Public License).
For detailed licensing information see the file COPYING in the source code.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

ii Copyright © 2009 Embecosm Limited

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com
http://www.gnu.org/licenses/gpl.html

ECOSM

Table of Contents

B Go ko Te A6 (et o3 s NPT P PP PPRPI 1
1.1. Why Use Cycle Accurate Modelingccoviiiiiiiiiiiiiiiii e 1
1.2, Target AUAIEIICE ..oeuiiiiiiiiiiiii ettt ettt et et e e e et e e e eneans 1
1.3, OPEIL SOUTCE cuivniniiniiiiiiiii ittt ettt ettt e et e et et e e et e e eneaaenean 2
1.4. Further Sources of INformationc..coveiiiiiiiiiiiiiiii e 2
1.4.1. Written Documentationccooeeiiiiiiiiiiiiiiiiiii 2
1.4.2. Other Information Channelsc..coiiiiiiiiiiiiiiiiii e, 2
1.5. ADOUL EMDECOSITL .oiiiiiiiiiii ittt en e 3
2. Overview of Technologies and TOOLSc.ccoiiiiiiiiiiiii e 4
2.1. OSCI SystemC IEEE 1060coiiuiiiiiiiiiiiiiie et e e e e ens 4
2.2. Cycle Accurate MoOdElNGccuieniiniiiiiiiiiiii e e 4
2.2.1. Level of Modeling Detailccciiiiiiiiiiiiiiiiiiiiiei e)
2.2.2. TOOL SUPPOTE ceneiieiiii ettt ettt e e e e e e e ens S
2.2.3. Modeling LanguUage ...c..c.oceoeiiiniiiiiiei ettt ans S
2.3. OpenCores and the OpenRISC Projectcccooiiiiiiiiiiiiiiiiiiiiiiieicicreeeeeeeeee S
2.3.1. The OpenRISC Reference Platform System-on-Chip (ORPSoC) 6
3. The Target MOAEL ..ottt ettt et e e e et e e e eaens 7
3.1, JTAG INEEITACE .oeniniiii e ettt e e e eans 7
3.2. Embedded Software AppliCationscce.veuieuiiuieiiiiiiiieii e 7
3.3. Building the Model ... e 7
4. The GDB Remote Serial ProtoCol SEIVeTc.iceiiiiiiiiiiiiiiiiiiiii e e 9
4.1. System Class and Module StrucCturec.coooiiiiiiiiiiiiiiiiii e, 9
4.2. The RSP Packet Interface, RSpConnectionccccoveuviiiiiiiiiiiiiiiiiniiniinieiennennes 10
4.2.1. RSPCONNECHION ClASS .oeutiuiiiiiiii et ee e e e e ens 11
4.2.2. RSPPACKEL ClasSS iouiiiiiiiii e 12
4.3. Modeling the OpenRISC 1000 Debug Unitccocveiiiiiiiiiiiiiiiiniiiieeeeeeeeenees 12
4.3.1. How JTAG is used by the OpenRISC 1000 Debug Unitccccoeveneniennns 13
4.3.2. DebugUnitSC ClasS .i.iiuiiiiiiiiiiiie e 15
4.3.3. SPrCache Class oo 17
4.3.4. MemCaChe ClasSS .i.iiuiiiiiiiiiii ettt ettt aaes 18
4.4. Overall GDB Server Behaviorcccocoiiiiiiiiiiiiiiiiiii e 19
4.4.1. GADSErVEIrSC ClaSS .iuuiiiiiiii ettt et et et eaeeaeas 19
4.4.2. MPHASH ClasS iouiiiiiiiiiiiiii ettt et et e e eaee 20
4.4.3. MPENDtry Struct .o 21
4.5. Building the Complete SYSteIm ...c.ceiiiiiiiiiiiii e 21
4.5.1. An Example Debugging SeSSION.ceoiiiiiiiiiiiiiniinieiieiieieieeeeeeeeneennenn 22
4.6. Foibles of Real HardWarecoccieeiiiiiiiiiiiii et e e 25
4.6.1. Setting the Next Program Counter SPRc.ccoiiiiiiiiiiiiiiiiiiiiiieeeeneee 25
4.6.2. JTAG register bit Width ..cooooiiiii e 28
4.6.3. Hardware Single Step ...ccieuiiriiiiiiiiiiii e 29
S. Optimizing the GDB SEIVET ...c.iiiiiiiiiii ettt e et e e e e e enens 32
S.1. Assessing Performancecooiiiiiiiiiiiii e 32
5.1.1. Load Generated by Debugging Commandsccccceeevenienienieiieineineenenne. 32
5.2. Caching SPR and MemOTY ACCESS ..ieutiuiiuiiuiiiiieiteeiet ettt eaenaenenaennees 32
5.3. Compiler OptimizZationc.ooiiiiniiii ettt 33
5.4. Overhead of the RSP Debugger Interfacecoooviiiiiiiiiiiiiiiiiiiiinieens 33
5.5. Summary of Performance Optimizationccccooiiiiiiiiiiiiiiiiniiiiinieieeeeane 34
B, SUIMIITIATY ceinitiniti ittt ettt et et ettt et et e et et et ea et et e e et e et e et en e e eneaaeneanennan 35
(€ 3 (T -1 o TP P RPN 36
R T EIICES .ottt ettt et et ettt e e e 38
iii Copyright © 2009 Embecosm Limited

ECOSM

List of Figures

2.1. The OpenRISC Reference Platform System-on-Chip (ORPS0C).cccocoiiiiiiiiniennennenn. 6
4.1. Top level Structure of the GDB Server for Cycle Accurate Models.ccooeeiiiiiiinns 9
4.2. Top level Class Diagram of the GDB Server for Cycle Accurate Models. 10
4.3. Class Diagram for the RSP interface.c.coooiiiiiiiiiiiiiii e, 10
4.4. Class Diagram for the Debug Unit modelcooiiiiiiiiiiiiiiiieeaeae 13
4.5. RISC_DEBUG JTAG data register formatc.cooviiiiiiiiiiiiiiii e, 14
4.6. REGISTER JTAG data register formatcccoiiiiiiiiiiiiiiiiiii e 14
4.7. WISHBONE JTAG data register formatcooiiiiiiiiiiiiiiiiiiie e 15
4.8. Class Diagram for the GDB SEIVET.cciiiiuiiiiiiii it te e eeans 19
4.9. VCD trace of the OpenRISC 1000 pipeline following a l.trap stall.c..cc.cceeiieneee. 26
4.10. VCD trace of the OpenRISC 1000 pipeline following a write setting NPC to 0x12f4.
.. 27
4.11. VCD trace of the OpenRISC 1000 pipeline following a second write setting NPC to
10411010 PP PP P PRSPPI 27
4.12. VCD trace of the OpenRISC 1000 pipeline refill when the CPU is unstalled. 28
4.13. JTAG chain data register actual implementation.ccocoeeiiiiiiiiiiiiiiiiiinennennen. 29
4.14. JTAG RISC_DEBUG> and WISHBONE debug chains data register actual
IMPLEMENTATION. ..ettiiii ittt e et ettt e et et et et e e et en e en e eaeaaas 29
4.15. JTAG REGISTER> debug chain data register actual implementation. 29
4.16. VCD trace of the OpenRISC 1000 pipeline after multiple single steps.c........... 30

iv Copyright © 2009 Embecosm Limited

ECOSM

List of Tables

5.1. Load generated by the GDB debugging SCript.cc.coveiiiiiiiiiiiiiiiiiiiii s 32

5.2. Effect of SPR and memory caches on GDB server and client performance. 33

5.3. Effect of compiler optimization on GDB server and client performance. 33
Copyright © 2009 Embecosm Limited

ECOSM

Chapter 1. Introduction

This document describes how to integrate the GNU Debugger, GDB, with fast cycle accurate
SystemC models of processors and systems-on-chip (SoC). This provides a highly productive
environment for early software development, testing and performance analysis before silicon
is available.

The interface is made through the cycle accurate model of the JTAG (IEEE 1149.1) interface
of the chip [16] [15]. This means the interface is readily reusable for FPGA implementations
or finished silicon.

1.1. Why Use Cycle Accurate Modeling

Cycle accurate models in C and SystemC are becoming an increasingly important part of the
verification process, particularly for SoCs with performance critical embedded software. They
represent a software friendly compromise, offering higher performance than traditional event-
driven simulation, but greater accuracy than hand-written instruction set simulators (ISS)
and transaction level models (TLM).

Typically such models follow 2-state, zero-delay synthesis semantics, offering an early insight
into the behavior of the synthesized design. Applications include:

. Implementation of low level firmware, such as board support packages codecs and
specialist device drivers, which rely on exact behavior of SoC peripherals.

. Software optimization. This can be particularly important for codec development, where
the performance depends critically on interaction between processor, memory, cache
and MMU. In such scenarios, estimates by ISS and TLM can be out by a factor of 3,
resulting either in wasted silicon, or chips that cannot meet their required performance.

. Detailed performance analysis of systems, based on the actual hardware implementation
running with its embedded software.

For all these purposes, a debugger is required, capable of communicating with the cycle
accurate model. This application note shows how to implement that debugger interface for
GDB using the GDB Remote Serial Protocol (RSP).

This application note builds on several earlier Embecosm Application notes:

. EAN3. Howto: Porting the GNU Debugger: Practical Experience with the OpenRISC 1000
Architecture [7].

. EAN4. Howto: GDB Remote Serial Protocol: Writing a RSP Server [8].

. EANS. Using JTAG with SystemC: Implementation of a Cycle Accurate Interface [9].

. EANG6. High Performance SoC Modeling with Verilator: A Tutorial for Cycle Accurate
SystemC Model Creation and Optimization [10].

1.2. Target Audience

This application note is intended for any engineer who needs to interface GDB to a cycle
accurate model of a CPU or SoC. The earlier application notes provide guidance on GDB JTAG
and cycle accurate modeling.

While based entirely on open source tools, the techniques described are equally applicable to
commercial tools.

1 Copyright © 2009 Embecosm Limited

ECOSM

1.3. Open Source

This application note uses entirely free and open source tools. The designed used is an open
source SoC, ORPSoC [18]. The cycle accurate model is implemented in SystemC [22] generated
automatically by Verilator [19]. The embedded software is compiled using the GNU C compiler
[20] and debugged using the GNU debugger [21].

1.4. Further Sources of Information

1.4.1. Written Documentation

First and foremost this application note draws on techniques described in Embecosm
Application Notes 3-6 [7] [8] [9] [10]. These should be used as the primary source of additional
information.

Verilator has its own website (www.veripool.org), providing guidance for downloading,
installing and using the tool. In particular this application note should be read in conjunction
with the Verilator user guide.

SystemC is defined by IEEE standard 1666, and the standardization documents are the
ultimate reference. The SystemC standard [14] is a free PDF download (a novelty for the IEEE).
The open source reference implementation from OSCI includes an introductory tutorial.

JTAG is also an IEEE standard (1149.1), and the standardization document is the ultimate
reference. Unlike the SystemC standard, the JTAG standard [16] costs money. The Texas
Instruments JTAG primer [15] is a useful free alternative.

The main user guide for GDB [21] provides a great deal of context about how GDB is intended
to work. The GDB Internals document [12] is essential reading before and during any porting
exercise. It is not complete, nor is it always up to date, but it provides the first place to look
for explanation of what a particular function does.

The files making up the examples used in this application noted are comprehensively
commented, and can be processed with Doxygen [23]. Each class, member and method's
behavior, parameters and return value is described.

1.4.2. Other Information Channels
There is a wealth of material to support both SystemC and JTAG on the Internet.

The Open SystemC Initiative (OSCI) provides an open source reference implementation of the
SystemC library, which includes tutorial material in its documentation directory. These may
be accessed from the OSCI website (www.systemc.org).

OSCI also provide a number of public mailing lists. The help forum and the community forum
are of particular relevance. Subscription is through the OSCI website (see above).

The main GDB website is at sourceware.org/gdb/. It is supplemented by the less formal GDB
Wiki at sourceware.org/gdb/wiki/.

The GDB developer community communicate through the GDB mailing lists and using IRC
chat. These are always good places to find solutions to problems.

The main mailing list for discussion is gdb@sourceware.org, although for detailed
understanding, the patches mailing list, gdb-patches@sourceware.org is useful. See the main
GDB website for details of subscribing to these mailing lists.

IRC is on channel #gdb on irc.freenode.net.

2 Copyright © 2009 Embecosm Limited

http://www.veripool.org
http://www.systemc.org
http://sourceware.org/gdb/
http://sourceware.org/gdb/wiki/

ECOSM

1.5. About Embecosm

Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services:

Customization of open source tools and software, including porting to new architectures.
Support, tutorials and training for open source tools and software.

Custom software development for the embedded market, including bespoke software
models of hardware.

Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

Copyright © 2009 Embecosm Limited

http://www.embecosm.com/

ECOSM

Chapter 2. Overview of Technologies and Tools
2.1. OSCI SystemC IEEE 1666

The development of SystemC as a standard for modeling hardware started in 1996. Version
2.0 of the proposed standard was released by the Open SystemC Initiative (OSCI) in 2002. In
2006, SystemC became IEEE standard 1666-2005 [14].

Most software languages are not particularly suited to modeling hardware systemsl. SystemC
was developed to provide features that facilitate hardware modeling, in particular to model the
parallelism of hardware, in a mainstream programming language.

An important objective was that software engineers should be comfortable with using SystemC,
even though it is a hardware modeling language. Rather than invent a new language, SystemC
is based on the existing C++ language. SystemC is a true super-set of C++, so any C++ program
is automatically a valid SystemC program.

SystemC uses the template, macro and library features of C++ to extend the language. The
key features it provides are:

. A C++ class, sc_module, suitable for defining hardware modules containing parallel
processes.
Note
\\/ Process is a general term in SystemC to describe the various ways of
representing parallel flows of control. It has nothing to do with processes in
the Linux or Microsoft Windows operating systems.

. A mechanism to define functions modeling the parallel threads of control within
sc_module classes;

. Two classes, sc_port and sc_export to represent points of connection to and from a
sc_module;
. A class, sc_interface to describe the software services required by a sc_port or provided

by a sc_export;
. A class, sc_prim_channel to represent the channel connecting ports;

. A set of derived classes, of sc_prim_channel, sc_interface, sc_port and sc_export to

represent and connect common channel types used in hardware design such as signals,
buffers and FIFOs; and

. A comprehensive set of types to represent data in both 2-state and 4-state logic.

The full specification is 441 pages long [14]. The OSCI reference distribution includes a very
useful introductory user guide and tutorial [22].

2.2. Cycle Accurate Modeling

Cycle accurate models provide an accurate description of the state of the model on each
clock cycle. As such they represent a mid-point between traditional event driven simulation
(providing detail within the clock cycle) and high level transaction models (providing details of
bus transactions, but usually only approximate estimates of the cycle count).

! There are some exceptions, most notably Simula67, one of the languages which inspired C++. In some respects it
is remarkably like SystemC.

4 Copyright © 2009 Embecosm Limited

ECOSM

Cycle accurate models are of particular value, because they reflect the level of detail seen by a
software engineer using a chip. The software engineer generally cannot see what is happening
within clock cycles.

2.2.1. Level of Modeling Detail

There is some variation in the level of detail shown with specific modeling techniques. For
example cycle accurate models generated by ARC VTOC from Verilog RTL will show the value
of every state holding register in the model on each clock edge, and any asynchronous signal
edge. Hand-written cycle accurate models within ARM SoC Designer will typically only show
the state on the active edge of the clock cycle, and that state will be restricted to the external
ports and defined internal registers.

Most cycle accurate models follow 2-state, zero delay synthesis semantics. In this way they
are closer to the behavior of the actual chip than traditional 4-state event-driven simulation.
However there is no absolute reason why cycle-accurate models could not follow 4-state
simulation semantics.

2.2.2. Tool Support

Some cycle accurate models are written by hand—for example the cycle accurate models
supplied by ARM for their processor cores. However the great majority of cycle accurate models
are generated automatically from Verilog or VHDL RTL. There are two commercial products
(ARC VTOC and Carbon Design Systems ModelStudio) and one free open source product
(Verilator).

These models typically follow 2-state, zero delay, synthesizable semantics. Embecosm
Application Note 6 High Performance SoC Modeling with Verilator: A Tutorial for Cycle Accurate
SystemC Model Creation and Optimization [10] describes how to created a Verilator SystemC
model of ORPSoC which simulates at up to 130kHz on a standard Linux PC.

2.2.3. Modeling Language

All these tools generate models in C/C++. However SystemC is becoming increasingly popular,
and is generated by all the tools as well. However the reference OSCI SystemC simulator carries
a serious performance penalty, and in all cases the model is a SystemC wrapper for the top
level ports around a plain C/C++ model.

The performance penalty of SystemC wrappers should be a consideration when generating
cycle accurate models. Performance can be particularly adversely affected by any ports of wider
than 64-bits. The reference SystemC simulator has a very low-performance implementation
of such ports.

2.3. OpenCores and the OpenRISC Project

The OpenRISC 1000 project forms part of the OpenCores organization (www.opencores.org).
Its aim is to create a free open source computing platform, comprising:

. An open source 32/64 bit RISC/DSP architecture;
. A set of open source implementations of the architecture; and
. A complete open source tool chain and operating system.

The OpenRISC 1000 project has resulted in Verilog for a 32-bit processor core, the OpenRISC
1200 (sometimes known as OR1200) and a complete reference System on Chip (SoC) design
using that core, ORPSoC.

OpenRISC 1000 is a traditional RISC load-store architecture. Optional operands for
multiplication and division may be added and there are optional data and instruction caches
and MMUs.

5 Copyright © 2009 Embecosm Limited

http://www.opencores.org

ECOSM

A particularly useful feature is the l.nop opcode. This takes an optional 16-bit constant
operand, which is placed in the low 16-bits of the instruction word. This field has no impact
on the execution of the instruction, but may be analyzed as required by external test benches.

2.3.1. The OpenRISC Reference Platform System-on-Chip (ORPSoC)

ORPSoC is a complete SoC based on the OpenRISC 1000. It combines the processor with
SRAM, flash memory and a range of peripherals as shown in Figure 2.1.

ORPSoC

pu

Wl

Figure 2.1. The OpenRISC Reference Platform System-on-Chip (ORPSoC).

The full design is around 150k gates + memories. It runs on standard Altera and Xilinx FPGA
boards and is also available commercially from Flextronics.

6 Copyright © 2009 Embecosm Limited

ECOSM

Chapter 3. The Target Model

The demonstration system is based on a fully configured ORPSoC with data and instruction
caches, data and instruction MMUs, multiply and divide instructions, 2MB Flash and 2MB
SRAM. SRAM and all other memories are implemented as generic flip-flop memory. Flash
memory is modeled as generic SRAM initialized from a file. The architecture of ORPSoC was
shown earlier in Figure 2.1.

A cycle accurate SystemC model of ORPSoC is generated using Verilator. The creation of this
model is described in Embecosm Application Note 6 [10].

With the exception of JTAG (see Section 3.1), none of the peripherals is modeled—all external
ports are tied off to appropriate values.

The system clock is set at 10 MHz (clock period 100 ns). This is an arbitrary choice, but makes
for easy reading of VCD traces. Modern FPGAs are capable of running ORPSoC at around
30 MHz.

3.1. JTAG Interface

The five JTAG ports in ORPSoC are modeled as SystemC sc_in<bool> (for jtag_tck, jtag_tdi,
jtag_tms and jtag_trst) and sc_in<bool> ports (for jtag_tdo).

Rather than drive the JTAG ports directly, requiring detailed management of the Test Access
Port (TAP) state machine, the GDB interface uses the Embecosm cycle accurate SystemC JTAG
interface [9]. This provides a SystemC FIFO interface on which requests to read and write the
JTAG instruction and data registers can be queued, as well as requests to reset the JTAG
TAP state machine.

3.2. Embedded Software Applications

The ORPSoC model is designed to load an initial image into Flash memory at start up. When
debugging with GDB it is more usual to use the debugger to load a particular image into RAM.
So the initial flash image is just a simple program which initializes the caches, then sits in
a tight loop. It may be found in the sw/loop directory and makes use of the OpenRISC 1000
utilities in sw/utils and the library in sw/support.

The directory sw/test-progs contains a series of programs for loading into RAM by GDB. The
programs are:

. hello.c. A simple "Hello World" program.

3.3. Building the Model

The distribution includes a top level make file, which will build the target model and link
it to the GDB RSP server interface. Plain make will build an unoptimized server and model.
Using make run-fast will build a model with profile-based optimization (which can increase
performance by a factor of 3). Using make VFLAGS=-trace will build an unoptimized version
of the server and model which also generates a VCD dump of the model in v-dump.vecd (and
consequently runs many times slower).

The build process assumes the availability of packages from other Embecosm packages. In
particular the Embecosm Cycle Accurate SystemC interface [9] is assumed to be installed in
/opt/ca-sysc-jtag and the Cycle Accurate SystemC Model generated using Verilator [10] is
assumed to be in a peer directory named orlk-verilator. Alternative locations may be used
by editing the top level Makefile.

7 Copyright © 2009 Embecosm Limited

ECOSM

A number of additional parameters are available, which mirror the parameters described in
Embecosm Application Note 6, High Performance SoC Modeling with Verilator: A Tutorial for
Cycle Accurate SystemC Model Creation and Optimization [10].

8 Copyright © 2009 Embecosm Limited

ECOSM

Chapter 4. The GDB Remote Serial Protocol

Server

4.1. System Class and Module Structure

The overall structure of the system is shown in Figure 4.1.

GDB Server

C C

TCP/IP RSP Packet Debug Unit
to client Interface Model
sc_fifo
Embecosm
[] SystemC JTAG
Interface
[1 Plain C++

sc_signal

ORPSoC

Figure 4.1. Top level Structure of the GDB Server for Cycle Accurate Models.

The top level SystemC module is the GDB Server. This relies on the RSP packet interface to
communicate over TCP/IP with the GDB client. It uses a model of the OpenRISC 1000 Debug
Unit to talk to the cycle accurate model of ORPSoC. The Debug Unit in turn uses the Embecosm

JTAG interface, allowing it to keep its JTAG interactions at a high level.

The model side is implemented in SystemC, the RSP interface in plain C++.

This structure is reflected in the top level class diagram, shown in Figure 4.2. The SystemC
classes are C++ classes which have sc_module as a base class. By convention SystemC classes
have the suffix SC and Verilator generated model classes have the prefix V followed by the name

of the top level Verilog module.

Copyright © 2009 Embecosm Limited

ECOSM

GdbServersc DebugUnitScC
1 1
1 1
1 1
RspConnection sc_fifo
1
1
Jtagsc sc_signal
[]SystemC
1 5
[Plain C++

5

1
Vorpsoc_fpga_top

Figure 4.2. Top level Class Diagram of the GDB Server for Cycle Accurate Models.

4.2. The RSP Packet Interface, RspConnection

The RSP packet interface is responsible for establishing the TCP/IP connection to and from the
GDB server class, GdbServerSC and transferring RSP packets to and from the server. Packets
are represented by their own class, RspPacket.

The class diagram in Figure 4.3 shows the relationship between these components.

RspConnection GdbServersc
1 1
1 1
RspPacket
1 1
[] SystemC
[Plain C++

Figure 4.3. Class Diagram for the RSP interface.

The main GdbServersScC class is responsible for creating both the RspConnection instance and
the RspPacket instance. In the RSP protocol there is only ever one packet active at any time,
so a single instance suffices. It is passed by pointer to RspConnection for use when getting
and putting packets on the TCP/IP connection.

The RSP connection is written in plain C++. There is no need for SystemC functionality. Indeed
the use of system library routines to establish sockets and listen for new connections does not

10 Copyright © 2009 Embecosm Limited

ECOSM

sit comfortably within the SystemC paradigm. A wait in the system library context suspends
the entire process pending action, whereas wait in the SystemC context merely suspends the
current thread.

This does not cause any practical problem with the synchronous GDB RSP interface. The TCP/
IP connection is only used when the target is suspended, so there is no need for SystemC to
be active.

4.2.1. RspConnection class

The public interface to this class is as follows:

11

RspConnection. The constructor, provided in two flavors. The first takes a single integer
argument, the port number to listen on. The second takes an optional string argument,
the name of a TCP/IP service to listen on (which defaults to "orlksim-rsp").

Both use the private function, rspInit to save the port number (O if the service name
is to be used) and service name and set the file descriptor for the connection (private
variable clientFd) to -1, indicating no connection is present.

~RspConnection. The destructor, which closes any connection which has been
established.

rspConnect (). This function listens for client GDB connections over TCP/IP using the
port or service specified in the constructor. The connection is established with a keep-
alive flag (for long debug sessions) and with Nagel's algorithm disabled. This ensures
that the characters of a packet are transmitted as a soon as they are available, rather
than being grouped for more efficient transmission. This is appropriate for an interactive
interface such as a debugger.

Once a connection is established, its file descriptor (which cannot be negative) is stored
in the private variable, clientFd.

The function returns false if a catastrophic failure occurs in setting up the connection.
This will cause the GDB server to terminate. A result of true indicates either a successful
connection, or that the connection attempt may be retried. The two can be distinguished
by use of the isConnected function (see below).

rspClose. This closes the connection if it is open and sets the file descriptor (clientFd)
to -1. It may be safely called without checking if the connection is still open, since it will
check the value of clientFd before closing it.

isConnected. This returns true if a connection is established (i.e. clientFd is not
negative) and false otherwise.

getPkt. This takes a pointer to a packet and populates it with the data from the next
packet read from the TCP/IP stream. It will continue to retry until a packet is successfully
read (i.e. is complete, fits into the packet data structure and has a correct checksum) or
the connection fails. The packet is acknowledged back to the client.

The RSP protocol requires certain characters ('$', '#' and '}') in the data field of
incoming packets to be escaped. However rather than inspecting every packet for
escaped characters, it is the raw data which is stored. This is because there is only one
packet type (X) which can have these characters, and it is more efficient to unescape the
characters only in the handler for that packet.

The private function getRspChar is used to read individual characters from the socket.
It will automatically retry in the event of an interrupt.

Copyright © 2009 Embecosm Limited

ECOSM

The function returns true if a packet is successfully read and false if the connection
fails.

. putPkt. This is the complement to getPkt, sending its argument packet back to the client.
It will continue to retry until receipt is successfully acknowledged or the connection fails.
Unlike getPkt, putPkt escapes its data field. Characters '$', '#', '*' and '}' are escaped
by preceding them with '}' and then the original character XORed with 0x20. It makes
sense to centralize escaping here, since several commands may generate results using
these characters.

The private function putRspChar is used to write individual characters to the socket. It
will automatically retry in the event of an interrupt.

The function returns true if a packet is successfully sent and false if the connection
fails.

4.2.2. RspPacket class

The RSP packet cannot be represented as a simple string, since binary packets may contain
null (string terminator) characters. Instead the packet is represented as a character buffer
and separate length field. However by convention the character buffer is also null-terminated,
allowing non-binary packets to be printed out for debugging purposes. The public interface
to this class is as follows:

. RspPacket. The constructor takes a single integer argument, the size of the data buffer
to allocate. It allocates that buffer and stores the record of its size.

. ~RspPacket. The destructor deletes the allocated data buffer.
. data. A pointer to the data buffer.

. packstr. Takes a string constant as argument and packs it into the data buffer, setting
the length field to the length of the string.

. getBufSize, getLen and setLen. Accessor functions to get the size of the data buffer and
to get and set the length of the data currently stored there.
Ny Note
\/ Although by convention all data is stored null-terminated in the buffer, this
null-termination is a convenience for debugging the GDB server and does
not form part of the data. The length does not include this null-termination
character.

4.3. Modeling the OpenRISC 1000 Debug Unit

The OpenRISC 1000 Debug Unit model provides a higher level abstraction of the debug
interface to the OpenRISC 1000, and sits above the JTAG interface. It allows access to main
memory and special purpose registers (SPRs) together with control of the CPU reset and stall
lines. These are all mapped onto lower level JTAG register accesses using the Embecosm cycle
accurate SystemC JTAG interface.

The Debug Unit model also offers higher level caching functions. The JTAG clock typically has
a period ten times greater than the main system clock. Combined with the serial nature of
JTAG this means that accessing a single register or memory location can take many hundreds
of system clock cycles.

While the processor is stalled, registers and memories do not change, so caching is possible
and can greatly increase performance. This is provided through the SprCache and MemCache
classes.

12 Copyright © 2009 Embecosm Limited

ECOSM

The class diagram in Figure 4.4 shows the relationship between these components.

GdbServersSc DebugUnitScC 1 1 SprCache
1 1
1
1
1
sc_fifo 1 MemCache
[] SystemC
[] Plain C++
1
1
Jtagsc

Figure 4.4. Class Diagram for the Debug Unit model

The main GdbServerScC class is responsible for creating the DebugUnitSC instance, passing in
the SystemC FIFO used to connect to the SystemC JTAG interface. The Debug Unit in turn
instantiates the SprCache and MemCache instances.

g Note

\// There are at least two different variants of the OpenRISC 1000 Debug Unit. This
application note describes the version used within the OpenRISC 1000 Reference
Platform System-on-Chip (ORPSoC). An alternative implementation by Igor Mohor
is simpler and more recent. Where the two need to be distinguished, they will be
referred to as the ORPSoC Debug Unit and Mohor Debug Unit respectively. Where
not thus qualified, the ORPSoC Debug Unit is the implementation being referred to.

4.3.1. How JTAG is used by the OpenRISC 1000 Debug Unit
The OpenRISC 1000 debug unit uses a 4-bit JTAG instruction register. It adds two additional
instructions, CHAIN_SELECT (binary 0011) and DEBUG (binary 1000).

. When instruction CHAIN_SELECT is used, the subsequent value shifted into the JTAG data
register indicates the debug chain (see the section called “ JTAG Debug Chains ”) that
will be used for subsequent debug operations.

. When instruction DEBUG is used, subsequent values shifted into the JTAG data register
are interpreted as instructions for the debug chain selected by the most recent
CHAIN_SELECT instruction. 4 bits are used to specify the debug chain.

All data registers have a cyclic redundancy check (CRC) field as their final (most significant) 8-
bits, calculated on the remaining bits. The CRC used is the 8-bit ATM Header Error Correction
[3], using the irreducible polynomial x® +x% + x + 1. This is capable of detecting all single and
double bit errors in the data register and single burst errors of up to 8 bits.

So the usual sequence of operations is as follows:
1. Shift instruction register CHAIN_SELECT.

2. Shift data register with the desired debug chain (4 bits) + CRC (8 bits).

13 Copyright © 2009 Embecosm Limited

ECOSM

3. Shift instruction register DEBUG.

4, Shift the instructions appropriate to the selected debug chain in to the data register.
The number of bits depends on the chosen debug chain (see the section called “ JTAG
Debug Chains 7).

JTAG Debug Chains
The debug chain is a 4-bit field. The OpenRISC 1000 Debug Unit defines 6 scan chains:

. GLOBAL_BS (binary 0000). The default debug chain, selected on reset, with no
functionality.

. RISC_DEBUG (binary 0001). The data register is used to read and write Special Purpose
Registers (SPRs). It is described in more detail in the section called “ The RISC_DEBUG
Debug Chain ”.

. RISC_TEST (binary 0010). This debug chain is specified, but not used. It has no
functionality if selected.

. TRACE_TEST (binary 0011). This is optionally available for the Debug Unit (under control
of a Verilog ~define), offering hardware trace functionality. It is not described further
in this application note.

. REGISTER (binary 0100). The data register is used to access and set the CPU's control
registers. It is described in more detail in the section called “ The REGISTER Debug
Chain ”.

. WISHBONE (binary 0101). The data register is used to read and write main memory
attached to the Wishbone bus. It is described in more detail in the section called “ The
WISHBONE Debug Chain ”.

The RISC_DEBUG Debug Chain
The RISC_DEBUG chain uses a 73-bit data register as shown in Figure 4.5.

| CRC | Data W] SPR
72 6564 33 32 31 0

Figure 4.5. RISC_DEBUG JTAG data register format

The first 32 bits (SPR) specify the SPR to be accessed. Bit 32 (W) is set if the value is to be
written. Bits 33-64 (Data) form the value to be written (if W is set) or the value read when the
result is shifted out. The final 8 bits (65-72) are the CRC.

The CPU logic is fast enough that the data field can be set during a single JTAG capture-shift-
update operation.

The REGISTER Debug Chain
The REGISTER chain uses a 46-bit data register as shown in Figure 4.6.

| CRC \ Data \W\Reg\
45 3837 654 0

Figure 4.6. REGISTER JTAG data register format

14 Copyright © 2009 Embecosm Limited

ECOSM

The first 5 bits (Reg) specify the CPU control register to be accessed. Bit 5 (W) is set if the value
is to be written. Bits 6-37 (Data) form the value to be written (if W is set) or the value read
when the result is shifted out. The final 8 bits (38-45) are the CRC.

The CPU logic is fast enough that the data field can be set during a single JTAG capture-shift-
update operation.

The OpenRISC 1000 Debug Unit defines 6 CPU control registers:

. MODER (binary 00000), TSEL (binary 00001), QSEL (binary 00010), SSEL (binary 00011) and
RECSEL (binary 10000). These registers control hardware trace, if that functionality is
implemented. They are not described further here.

. RISCOP (binary 00100). The bits in this register control the CPU. Bit O is the reset bit. If
written to 1, the CPU will be reset. Bit 1 is the stall bit. The value read indicates whether
the CPU is stalled. The CPU can be stalled by writing 1 to this bit and unstalled by
reading O from this bit.

Caution

@ Remember that accessing a JTAG register takes hundreds of system clock
cycles. It is quite possible to unstall the processor and for the processor
to have stalled again (perhaps due to hardware single step, or an adjacent
breakpoint) before the register is next read. This can cause confusion, with
"unstalling" appearing to have no effect. A VCD trace always clarifies what
is happening.

.4 Note

\;/ The Mohor Debug Unit has no support for trace and the value of the Reg field is
ignored. All accesses are for the RISCOP register.

The WISHBONE Debug Chain
The WISHBONE chain uses a 73-bit data register as shown in Figure 4.7.

| CRC \ Data \W\ Address
72 6564 333231 0

Figure 4.7. WISHBONE JTAG data register format

The first 32 bits (Address) specify the memory address to be accessed. Bit 32 (W) is set if the
value is to be written. Bits 33-64 (Data) form the value to be written (if W is set) or the value
read when the result is shifted out. The final 8 bits (65-72) are the CRC.

The Wishbone memory interface may not be able to set the data field during a single JTAG
capture-shift-update operation. This is particularly the case with slow memory. This can be
solved either by using the PAUSE-DR state of the JTAG TAP state machine, or by performing
two reads, one immediately after the other.

4.3.2. DebugUnitsc class

This class is a SystemC module (i.e. it has sc_module as a base class).

The Debug Unit functions work by queuing instances of TapAction sub-classes on a queue
(FIFO) connected to the JTAG interface (class JtagSC). This allows the debug unit to read and
write the various JTAG registers. In each case the debug unit waits (using the SystemC wait
function) for notification that the action is complete before proceeding. The full interface is

15 Copyright © 2009 Embecosm Limited

ECOSM

described in Embecosm Application Note 5 Using JTAG with SystemC: Implementation of a
Cycle Accurate Interface [9].

The Debug Unit caches the current value of the debug chain. This means it can avoid selecting
the chain for a debug action, where it is unchanged from the previous action.

The public interface to DebugUnitScC is as follows:

16

DebugUnitSC. Constructor, which takes as argument a pointer to the TAP action queue
of the target processor's JTAG interface.

The constructor instantiates the SPR and memory caches and marks the current stall
state of the target as unknown and the current debug chain as undefined.

~DebugUnitSC. The destructor, which deletes the SPR and memory caches.

resetDebugUnit. This function is called to reset the JTAG interface (rather than the CPU).
It achieves this by queuing a TapActionReset instance on the JTAG queue.

reset. This function resets the CPU. This is achieved by selecting the REGISTER debug
chain and writing bit 1 of the RISCOP CPU control register.

stall and unstall. These stall and unstall the processor by selecting the REGISTER debug
chain and respectively setting and clearing bit O of the RISCOP CPU control register. As a
matter of good practice the current value of the register is read, the relevant bit changed
and the value written back. This ensures any other bits are unchanged.

In practice the only other bit that has any effect in the current implementation is bit-1
(the reset bit), which should always be clear in this circumstance. However using this
approach ensures robustness of the code in the event of new control bits being added
in future debug units. If performance was particularly critical, this function could be
optimized by not reading the current value of the register.

isStalled. Return true if the processor is currently stalled and false otherwise.

The Debug Unit maintains a private enumeration variable (stallState) tracking the stall
state of the processor. It is set to STALLED whenever the processor is explicitly stalled (by
using the stall function) or is discovered to be stalled. It is set to UNKNOWN whenever the
processor is explicitly unstalled, or found to be unstalled.

o Note

\/ A processor which is running (i.e. UNSTALLED) can at any time stall, for
example due to hitting a breakpoint. Hence the only two useful values are
STALLED and UNKNOWN.

If the StallState shows the processor is currently stalled, the function immediately
returns TRUE. Otherwise it selects the REGISTER debug chain and reads bit O of the
RISCOP CPU control register. It then sets StallState to STALLED if the bit is set and
UNKNOWN if it is clear and returns true if the state is stalled and false otherwise.

readSpr and writeSpr. These functions respectively read and write a SPR by selecting
the RISC_DEBUG debug chain and shifting a data register with the SPR, W and Data fields
set appropriately.

This access can be optimized by use of the SPR cache. This is described in Section 5.2.

Almost all SPRs are readable. However the Next Program Counter (NPC) SPR has some
unexpected behavior due to the operation of the processor pipeline, which must be
managed. This is described in Section 4.6.1.

Copyright © 2009 Embecosm Limited

ECOSM

. andSpr and orSpr. Most SPR accesses involve reading a SPR using AND and OR
operations to clear or set a bit and then writing the value back. These functions are
provided as a convenience for such operations. They just call the main readSpr and
writeSpr functions.

. readMem32 and writeMem32. These functions respectively read and write a 32-bit value

from memory attached to the Wishbone bus of the OpenRISC 1000. The WISHBONE debug
chain is selected, and the value read or written by shifting a data register with the
Address, W and Data fields set appropriately.
In the case of readMem32 the memory access is usually not fast enough to populate the
data out field in time. The solution is either to use the JTAG PAUSE-DR state after bit 32
has been shifted, or to perform the read twice. The Embecosm Cycle Accurate SystemC
JTAG interface currently has no support for mid-transfer use of PAUSE-DR, so in this
implementation reads are performed twice.

Note
N
\\/ The GDB client will work with target endianness for any data it accesses, so
there is no need to make any transformation of data being transferred.

Caution

@ Using GDB to read or write memory mapped device registers can be
unreliable, particularly if reading has side effects (due to reads being
performed twice). It is best avoided.

. readMem8 and writeMem8. These functions respectively read and write a single byte from
memory attached to the Wishbone bus of the OpenRISC 1000.
Since the Debug Unit only provides for 32-bit read and write, the operation is achieved by
using 32-bit access (using readMem32 and writeMem32) and selecting the relevant byte. In
the case of writing this requires reading the original 32-bit value, patching the relevant
byte and writing back the 32-bit value.

Since the byte access will use host-endian arithmetic, the value read must be converted
from model endianness and any value written must be converted back to model
endianness. The Utils class provides suitable static functions to do this in Utils: :mtohl
and Utils::htoml.

Ny Note

\/ Endianness is a compile time constant of the GDB server. Either
TARGET_BIG_ENDIAN or TARGET_LITTLE_ENDIAN must be defined in the C++
compilation flags (CXXFLAGS) when compiling sysc-modules/Utils.cpp.

This is conveniently set in the Makefile for that directory (sysc-
modules/Makefile). The distribution has TARGET_BIG_ENDIAN set, since this
corresponds to the default setting in the OpenRISC 1000 Verilog source.

Caution

@ With the need for multiple accesses to 32-bit values for both read and write,
using these functions to access memory mapped device registers is best
avoided, particularly where registers (or any neighboring registers) have side-
effects.

4.3.3. SprcCache class

The OpenRISC 1000 provides for up to 2'® Special Purpose Registers (SPRs). These are
frequently accessed to implement debugging commands, yet do not change when the CPU is
stalled (but see the issue concerning the Next Program counter in Section 4.6.1).

17 Copyright © 2009 Embecosm Limited

ECOSM

In practice only a few SPRs are used repeatedly. It makes sense to cache the SPRs in a simple
closed hash table. SprCache represents the cache as three private C++ arrays. The Boolean
array sprIsvalid indicates whether than entry is valid, the sprKeyNum array holds the SPR
value for which this entry is valid and sprValue holds the corresponding cached value. Clearing
the cache is a matter of setting all entries in sprIsValid to false using memset.

A key feature is that the Next Program Counter (NPC) must always be cached (see
Section 4.6.1). The cache will reject attempts to write once it is 70% full (so caching remains
efficient). However a flag may be used to force caching beyond this point. This is safe, because
it is only ever used for one register, the NPC

The use of SprCache within the Debug Unit is discussed in the chapter on optimization
(Section 5.2).

The public interface to SprCache is as follows:

. SprCache. Constructor. Allocates the arrays and calls clear to reset the cache.
. ~SprCache. Destructor. Deletes the arrays.
. clear. Clears the cache by using memset to set all entries in sprIsValid to false.

. write. Writes a value for a SPR into the cache. Will do nothing if the cache is 70% full,
unless a flag parameter is set to force caching (used for NPC).

. read. Returns true if a SPR is in the cache. The cached value is returned by reference
through the second argument.

4.3.4. MemCache class

It also make sense to cache memory accesses when the CPU is stalled. The same locations are
repeatedly accessed as the stack is analyzed.

It is not generally feasible (nor efficient) to cache all of memory. Instead a small hash table
is used. In this case the hash table is represented by three private arrays, each of the same
size (specified in the constructor and dynamically allocated). tabIsValid is a Boolean array
indicating if the corresponding hash table slot is in use. tabKeyAddr holds the memory address
being used to key a particular hash table slot. tabValue holds the associated cached value.
The hash table can be cleared by using memset to set all the elements of tabIsValid to false.

The hash table provides for no retry function if a lookup clashes. The new key address replaces
any existing entry. In practice clashes are very unlikely, so this makes lookup efficient.

The use of MemCache within the Debug Unit is discussed in the chapter on optimization
(Section 5.2).

The public interface to MemCache is as follows:

. MemCache. Constructor, which takes the size of the hash table as an optional argument.
The default if no size is specified is 1009. The hash table arrays (tabIsValid, tabKeyAddr
and tabValue) are allocated. The table is cleared by calling clear.

. ~MemCache. The destructor, which frees the hash table arrays.

. clear. Clears the hash table by using memset to set all elements of tabIsValid to false.

18 Copyright © 2009 Embecosm Limited

ECOSM

. write. Writes a hash table entry for a specified address and value. Any existing entry
at that location is overwritten.

. read. Returns true if the given memory address is in the cache. The cached value is
returned by reference through the second argument.

4.4. Overall GDB Server Behavior

The class diagram in Figure 4.8 shows the relationship between the main GdbServerScC
SystemC module class and other classes. The GDB server instantiates a class, MpHash to track
GDB matchpoints (that is breakpoints and watchpoints) in a hash table. MpHash is in turn built
from instances of MpEntry.

RspConnection GdbServersc DebugUnitScC

MpHash

1

1.*
MpEntry

Figure 4.8. Class Diagram for the GDB server.

4.4.1. GdbServersScC class

The public interface to the GdbServerScC class is its constructor and destructor. The constructor
arguments include the start and end address of Flash memory, the port on which RSP TCP/
IP connections will be accepted and a pointer to the JTAG FIFO for TAP actions.

The constructor instantiates a new instance of RspConnection to handle the RSP TCP/IP
interface (see Section 4.2) and a new instance of DebugUnitSC to model the interface to the
OpenRISC 1000 Debug Unit and drive the JTAG interface (see Section 4.3). It creates an
instance of RspPacket to hold the data associated with the packet currently in use.

The GDB server needs to keep track of breakpoints and watchpoints (collectively known
as matchpoints) which have been inserted. These use OpenRISC 1000 1.trap instructions.
Class MpHash holds details of each matchpoint: its type, address and the instruction that was
replaced by 1.trap. The GdbServersC constructor creates an instance of this class.

Finally the constructor declares the private function rspServer as a new SystemC THREAD.

The SystemC Thread, rspServer

On start up, the OpenRISC 1000 model loads an image from Flash memory which initializes
the exception vectors in RAM, sets up any caches and then jumps to the reset vector (location
0x100). GDB debugging should not start until this initialization has occurred.

19 Copyright © 2009 Embecosm Limited

ECOSM

This is achieved by detecting when the processor first tries to access a location outside Flash
memory (hence the need for this addresses to be passed to the constructor). At start up, the
thread resets the JTAG interface of the Debug Unit, then waits until the next program counter
has a value outside the flash memory address range.

This is followed by the main loop. The first part of the loop checks if a connection to a GDB client
has been established, and if not loops trying to listen. When a new connection is established
it immediately stalls the processor, pending instructions from the client.

The second part of the loop waits until the processor has stalled (it will already be stalled on
first connection). Once it has stalled it notifies the GDB client, then processes the next RSP
packet from the client using the function rspClientRequest. The majority of packets will leave
the CPU unstalled, so subsequent moves round the loop will immediately come back to the
same point and call rspClientRequest again.

The exceptions are continue, step and restart packets which unstall the processor. There will
be no further RSP packets processed until the processor stalls again. This will either be due
to hitting a breakpoint or the connection being dropped and reconnected.

g Note

\¢ This loop relies on detecting a stalled processor (using the variable targetStopped)
being a fast operation. It would not be efficient if the target had to be interrogated
via JTAG between processing each GDB packet.

The processing of individual packets by rspClientRequest follows the same approach
described in Embecosm Application Note 4 Howto: GDB Remote Serial Protocol: Writing a RSP
Server [8]. The only difference is the code is in C++ rather than C. The details of individual
packet actions are not described further in this application note. All the actions use reading
and writing of SPRs and memory in the same way. However for this application they use the
functions provided by the Debug Unit class, DebugUnitScC.

4.4.2. MpHash Class

MpHash is a closed hash table, whose entries are linked lists of MpEntry entities (see
Section 4.4.3). Each entry represents one breakpoint or watchpoint. Five types of matchpoint
are supported:

. BP_MEMORYliteral>. A memory (soft) breakpoint.

. BP_HARDWARE. A hardware breakpoint

. WP_WRITE. A hardware write watchpoint

. WP_READ. A hardware read watchpoint

. WP_ACCESS. A hardware access (read or write) watchpoint.

Entries are keyed on both the address and type of the matchpoint. It is quite possible to have
both a breakpoint and watchpoint on the same location, but they are separate entities.

N Note

\/ Although all five matchpoint types are supported in the matchpoint table, the
current implementation of the GDB server does not provide an implementation for
hardware breakpoints or any watchpoints.

20 Copyright © 2009 Embecosm Limited

ECOSM

The public interface to MpHash is as follows:

. MpHash. The constructor. Takes an optional argument specifying the size of hash table to
allocate (default value 1021). Allocates a new array for the hash table in private variable
hashTab (an array of pointers to MpEntry) and sets all the pointers to NULL to mark the
table as empty.

. ~MpHash. Destructor. Deletes the allocated hash table.

. add. Adds a new entry to the hash table if it isn't already there. If it is there already it
does nothing.

. lookup. Look for an entry in the hash table. If the entry is found, return a pointer to its
MpEntry, if not return NULL.

. remove. Remove an entry from the hash table. Return true if the entry was found and
deleted, false otherwise.

4.4.3. MpEntry Struct

MpEntry is declared as a struct, rather than a class, to emphasize it is purely a data structure,
with no explicit member functions. It represents a single matchpoint in the hash table.
There are three public member variables:

. type. The type of matchpoint being represented.

. addr. The address of the matchpoint

. instr. For memory (soft) breakpoints the OpenRISC 1000 instruction which has been
substituted by a 1.trap instruction.

There is one private variable, next, a pointer to MpEntry, used to form lists of entries in the hash
table. MpHash is declared a friend class, giving it access to this variable to construct the lists.

4.5. Building the Complete System

The main program is found in OrpsocMain.cpp, with a header file, OrpsocMain.h, providing
system wide constants.

Since this is SystemC, OrpsocMain.cpp declares sc_main. This instantiates all the SystemC
modules and connects them as described in Embecosm Application Note 6 High Performance
SoC Modeling with Verilator: A Tutorial for Cycle Accurate SystemC Model Creation and
Optimization [10]. The Embecosm Cycle Accurate SystemC JTAG interface is instantiated
and connected as described in Embecosm Application Note S5 Using JTAG with SystemC:
Implementation of a Cycle Accurate Interface [9].

The port number to connect on may be supplied as an argument to the GDB server program
(so will appear in argv). If not provided it defaults to 51000.

Finally the GDB server SystemC module, GdbServerscC is instantiated taking the port number

and pointer to the JTAG FIFO as arguments. The GdbServerSC SystemC thread will then
execute, processing RSP packets and driving the OpenRISC 1000 model via its JTAG interface.

21 Copyright © 2009 Embecosm Limited

ECOSM

4.5.1. An Example Debugging Session.

The directory sw/test-progs contains a number of simple test programs. Use the Makefile to
build these. The programs include a simple "Hello World" program in hello.c, which compiles
to the file hello.

First build the GDB server. Use the command make from the top level directory.

$ make
<makefile output>
time -p ./Vorpsoc_fpga_top

SystemC 2.2.0 --- May 16 2008 10:30:46
Copyright (c) 1996-2006 by all Contributors
ALL RIGHTS RESERVED
Loading flash image from sim/src/flash.in
(orpsoc.v.uart_top) UART INFO: Data bus width is 32. Debug Interface present.

(orpsoc.v.uart_top) UART INFO: Doesn't have baudrate output

Listening for RSP on port 51000

In a separate window, change to the sw/test-progs sub-directory and build the example
programs using make. Then start the OpenRISC 1000 implementation of GDB (see Embecosm
Application Note 2: The OpenCores OpenRISC 1000 Simulator and Tool Chain: Installation Guide
[6] for details of how to install the tool chain).

$ or32-uclinux-gdb

Building automata... done, num uncovered: ©/216.

Parsing operands data... done.

GNU gdb 6.8

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "--host=i686-pc-linux-gnu --target=or32-uclinux"”.

(gdb)

First load the program symbol table using the file command. Then connect to the GDB server
using the target remote command. Since no port number was specified, the default 51000
will be used:

(gdb) file hello

Reading symbols from .../sw/test-progs/hello...done.
(gdb) target remote :51000

Remote debugging using :51000

0x040001f0 in ?? ()

(gdb)

22 Copyright © 2009 Embecosm Limited

ECOSM

At start up the processor is stalled, so it looks to the GDB client as though the target has just
hit a breakpoint at the address of the Previous Program Counter (PPC). Since the processor
stalled just as it finished executing in Flash memory, the address of the PPC is an address
in Flash. That has nothing to do with the "Hello World" program which will be loaded, and
for which the symbol table has already been loaded. So the GDB client cannot identify which
source code this location corresponds to and just reports it as ??.

The window with the GDB server acknowledges the connection:

Listening for RSP on port 51000
Remote debugging from host 0.0.0.0

Since this is a local connection the remote host is reported as 0.0.0.0.

The client can now load the hello world program. This will take a few seconds, even for a
program as small as this, since each word has to be loaded over the model of JTAG, taking
round 750 clock cycles. Even with a model running at nearly 100kHz this takes some time.

(gdb) load hello

Loading section .text, size 0x1350 1lma 0x0
Loading section .rodata, size Ox1f 1lma ©x1350
Start address 0x100, load size 4975

Transfer rate: 323 bytes/sec, 236 bytes/write.

(gdb)

A breakpoint can be set on the main program and execution continued:

(gdb) break main

Breakpoint 1 at @x12f4: file hello.c, line 26.
(gdb) continue

Continuing.

Breakpoint 1, main () at hello.c:26

26 simputs ("Hello World!\n");
(gdb) list

21 #include "utils.h"

22

23

24 main()

25 {

26 simputs ("Hello World!\n");
27 simputs ("The answer is ");
28 simputn (6 * 7);

29 simputs ("\n");

30 simexit (42);

(gdb)

Placing a breakpoint on simputs allows the output generation to be followed:

23 Copyright © 2009 Embecosm Limited

ECOSM

(gdb) break simputs
Breakpoint 2 at 0x1234: file utils.c, line 105.

(gdb) c
Continuing.

Breakpoint 2, simputs (str=0x1350 "Hello World!\n") at utils.c:105

105 for(i = @; str[i] != "\@' ; i++) {
(gdb) list

100 */

101 void simputs(char *str)

102 {

103 int 1i;

104

105 for(i = @; str[i] != "\@' ; i++) {
106 simputc((int)(str[i]));

107 }

108

109 } /* simputs() */

(gdb)

At this stage no characters have been output, but continuing again will cause the function
to execute once:

(gdb) continue
Continuing.

Breakpoint 2, simputs (str=0x1350 "Hello World!\n") at utils.c:105
105 for(i = 9; str[i] !'= "\@' ; i++) {
(gdb)

Switching back to the server window, the first line of output can be seen:

Listening for RSP on port 51000
Remote debugging from host 0.0.0.0
Hello World!

The GDB extensions for OpenRISC 1000 are supported, so the info spr and spr commands
are both available:

(gdb) info spr cpucfgr
SYS.CPUCFGR = SPRO_2 = 32 (0x20)
(gdb)

The CPU configuration register is showing that only the ORBIS32 instruction set is currently
supported.

Deleting all breakpoints the program will run to completion:

24 Copyright © 2009 Embecosm Limited

ECOSM

(gdb) delete

Delete all breakpoints? (y or n) y
(gdb) continue

Continuing.

Remote connection closed

(gdb)

The server window shows the program running to completion. In this example hello.c calls
simexit which uses the OpenRISC 1000 l.nop 1 instruction to cause the simulation to
terminate.

Listening for RSP on port 51000
Remote debugging from host 0.0.0.0
Hello World!

The answer is 42

546960700.00 ns: Exiting (42)
SystemC: simulation stopped by user.
Closing connection

real 2708.49

user 87.82
sys 0.53
$

On completion the RSP connection is dropped.

4.6. Foibles of Real Hardware

Real hardware always has small issues which deviate from the standard documentation.
Sometimes these are bugs, but on other occasions they represent subtleties of behavior which
have not been fully documented. Any model generated automatically from Verilog RTL will
always faithfully model these small details. The OpenRISC 1000 is no exception and the RTL
includes examples of both classes of minor deviation from the documentation.

Any debug interface must take account of such variations, in order to ensure consistent
behavior.

4.6.1. Setting the Next Program Counter SPR

The OpenRISC 1000 instruction set architecture specifies two SPRs describing the program
counter. The Previous Program Counter (PPC) represents the address of the instruction just
completed. The Next Program Counter (NPC) represents the address of the instruction about
to be executed.

However the OpenRISC 1000 is a pipelined processor with a 4/5 stage pipeline, so at any one
time up to 4 instructions can be at some stage of execution. The pipeline stages are:

. Instruction Fetch

. Instruction Decode

. Execute

. Memory access (only for load /store instructions). Will stall the pipeline while the memory

is accessed.
. Write Back

The PPC represents the address of the instruction that has just completed the write back stage
of the pipeline. The NPC represents the address of the instruction which is the next to reach

25 Copyright © 2009 Embecosm Limited

ECOSM

the write back stage of the pipeline (which may be at an earlier phase than write back, if the
pipeline is not currently full).

The problem comes if the NPC is written while the processor is stalled. This must cause a
flush of the pipeline, so until the processor is unstalled there is no instruction anywhere in
the pipeline waiting to be executed. Thus a subsequent read of the NPC will return zero, not
the value just written.

This behavior can be seen by following a VCD trace through a number of debug actions.
This uses the "Hello World" example from Section 4.5.1. The program is loaded and run to a
breakpoint set at the start of main (address Ox12f4).

(gdb) target remote :51000

(gdb) load hello

Loading section .text, size ©x1350 1lma 0x0
Loading section .rodata, size Ox1f 1lma ©x1350
Start address 0x100, load size 4975

Transfer rate: 82 bytes/sec, 236 bytes/write.
(gdb) break main

Breakpoint 1 at @x12f4: file hello.c, line 26.
(gdb) continue

Continuing.

Breakpoint 1, main () at hello.c:26
26 simputs ("Hello World!\n");

(gdb)
At this point (111,173.85us), the wave trace in Figure 4.9 shows the processor stalling. The
program counter for the write back stage is the address of break point (0x12f4) and the

instruction associated with the write back phase is the 1.trap instruction (0x21000001) used
to generate the trap.

Time 104366 1= 104%) =

clk-1

jtag_tck-1] 1
dbg_stall-1

1f_pc[31:0]-000012EC 00001 2+ (00001260 (OO001ZE4 DO001ZEE OO001ZEC
id_pe[31:0]-000012F8 B0001 2+ {DODOLZEC BODDLZED TO001ZE4 BO001ZFS
ex_pc[31:0]-000012F8 000017+ {00001ZES D000+ {0000LZED 0000+ J00001ZEG
wo_pc[31:0]1-000012F4 T0G01 264 D000+ {OO00LZEC TO00LZE0 00001284
if_insn[31:0]-14610000 Y3041+ (14610000 D401+ YLdEl+ YZ100+ Y1dE10000 VEBES+ J14610000
id_insn[31:0]-A8631350 DI0LI0F {9C41000C T461+ (04014800 21000001 1461+ (AB631350
ex_insn[31:0]-14610000 3CZ1FEr ¥DA011004 SCAl+ (14610000 04014800 ¥Z100+ J14610000
Wi_inan[31:0]1-21000001 144100+ {9CZ1FEEd D401+ ¥o41000C T4610000 DA01+ 71000001

Figure 4.9. VCD trace of the OpenRISC 1000 pipeline following a 1.trap stall.

The succeeding instructions can be seen part processed in the pipeline. Disassembling around
the breakpoint, the assembly code is:

(gdb) disassemble 0x12f0 0x1300

Dump of assembler code from 0x12f@ to 0x1300:
0x000012f0 <main+12>: 1.sw o(r1),r9
0x000012f4 <main+16>: l.movhi r3,0x0
0x000012f8 <main+20>: l.ori r3,r3,0x1350
0x000012fc <main+24>: 1.jal <simputs>
End of assembler dump.

(gdb)

26 Copyright © 2009 Embecosm Limited

ECOSM

The instruction at the breakpoint (0x12f4) is not 1.movhi as shown in the disassembly, but
has been replaced by the 1.trap to cause the breakpoint. The next instruction, at location
0x12f8 is 1.ori r3,r3,0x1350 (0xa8631350). This instruction is between instruction decode
and execution stages. The address is shown in both stages and the instruction itself can be
seen in the instruction decode stage.

On hitting a breakpoint, the first action of GDB is to set the program counter back by one
instruction. This is because the instruction that was replaced by 1l.trap for the breakpoint
must be put back so it can be executed before resuming any further execution. This involves
writing the NPC, changing it from its value of Ox12f8 (the 1.ori instruction) back to 0x12f4.

This behavior can be seen in Figure 4.10 at time 104,890.85ps. The write back program
counter is left unchanged (0x12f4), since the instruction has already been executed. However
the program counters for instruction decode and execute are set to zero. The program counter
for instruction fetch is set to the new value, 0x12f4. The instruction registers for all stages
have nonsense values in them (there is no OpenRISC 1000 instruction beginning with 0x14).

T ime 10460 1080l =
clk-1 g1 rrrirrir el rn e rrr et e 1 1 rir
Jbag_tok=1 1] 1]

diog_stall-1

if_pe[31:0]-000012F4 00001 ZFC 000012F4
id_pc[31:0]=00000000 00001ZFE
ex_pe[31:0]=-00000000 00001ZFE 00000000
wio_pe[31:0]=000012F4 000012F]

if_in=n[31:0]=-14610000 14410000
id
ax
Wb

inan[31:0]-14410000 REE3L350 14410000

insn[31:0]-14410000 14610000 14410000
in=an[31:0]=14410000 Z100000L 14410000

Figure 4.10. VCD trace of the OpenRISC 1000 pipeline following a write setting NPC
to Ox12f4.

The Next Program Counter (NPC) is used in GDB as the value of the Program Counter ($pc).
This can be changed using the set command:

(gdb) set $pc=0x100
(gdb)

The value appears as the new address for the instruction decode stage of the pipeline. This
is shown in Figure 4.11 at time 110,264.85ps. Addresses for all other pipeline stages are
unchanged, and the instruction values for these stages are still meaningless.

Time W0 ® 0T
olk=1 L rrrirrirrtr rt el e e e rt rr it e rt LI
Joag_tok=1 1] 1]

dibg stall-1

if_po[31:0]=00000100 00G012F4 60000100
id_pe[31:0]=-00000000 00000000
ex_pc[31:0]=00000000 00000000
wis_pe[31:0]-000012F4 000012F4

if_insan[31:0]-14610000 14§10000
:0]=14410000 14410000
ex_in=sn[31:0]=14410000 14410000
in=n[31:0]=-14410000 14410000

"
o
1|
n
8
o
5
w
ot

Figure 4.11. VCD trace of the OpenRISC 1000 pipeline following a second write setting
NPC to 0x100.

Once the pipeline is unstalled, it will refill. This can be achieved by continuing execution:

27 Copyright © 2009 Embecosm Limited

ECOSM

(gdb) continue
Continuing.

Breakpoint 1, main () at hello.c:26
26 simputs ("Hello World!\n");

(gdb)

Execution will restart from the new value of NPC (0x100, the reset vector). A disassembly
shows the instructions at that address:

(gdb) disassemble 0x100 0x110

Dump of assembler code from 6x100 to 0x110:
0x00000100 <_start+0>: l.addi ri1,re,32512
0x00000104 <_start+4>: 1l.addi r2,r1,0
0x00000108 <_start+8>: l.mfspr r3,re,0x11
0x0000010c <_start+12>: l.ori r3,r3,0x2
End of assembler dump.

(gdb)

The VCD trace in Figure 4.12 shows the processor unstalling at time 111,173.85ps. In
consecutive cycles the pipeline fills with the instructions from locations 0x100 (0x9c207f00,
l.addi ri,re,ex7fee, 0x104 (0x9c410000, l.addi r2,r1,e), 0x108 (0xb4600011,
1.mfspr r3,r0,0x11) and Ox10c (0xa8630002, 1.ori r3,r3,0x2).

: W w LM =
Time
clk-1
jtag_tck-1] 1
dbg_stall-o
1f_pe[31:0]-00000100 00000100 00000104 00000103 T0000L0C 000001
id_pec[31:0]-00000000 BO000000 (60666100 B0000104 BOO00L08 {BB00010
ex_pc[31:0]-00000000 00000100 BO000164 {OB00010:
wh_pc[31:0]-000012F4 TO001ZF4 TO000100 YOB0001 04
if_in=an[31:0]=14610000 14510000 5CZ0+ WLAE1+ §9CALl+ ¥LABL+ KEAED+ ¥1ABL+ YRo6s+ 41461+ 70
id_insn[31:01-14410000 14410000 9CZ07E00 5CA10000 E4600011 ¥REE30007
ex_insn[31:0]-14410000 14410000 5C207E00 SCAL0000 YB4600011
wib_insan[31:0]-14410000 13410000 SCZ07E00 {5T41000

Figure 4.12. VCD trace of the OpenRISC 1000 pipeline refill when the CPU is unstalled.

This complexity of behavior is not generally what is wanted by a debugger. GDB will regularly
write the NPC to a new value, but expects that subsequent reads will return the value just
written. It is therefore essential that notwithstanding any other arrangements the NPC must
be cached while the processor is stalled.

GDB from time to time may write the NPC to its current value. The intention is that this should
have no effect, yet if the NPC SPR is written the pipeline will be flushed. This can be particularly
catastrophic if the flush causes a delayed branch to be lost.

Thus the interface must ensure that any request to write the value of the NPC does nothing
if the value is the same as the value already there.

4.6.2. JTAG register bit width

This appears to be a hardware bug. However there may be a good reason for the behavior,
since it is quite explicit in the source Verilog.

28 Copyright © 2009 Embecosm Limited

ECOSM

The JTAG data registers are all one bit bigger than stated in Section 4.3. When shifting a
register in an extra top bit is provided, but ignored. When shifting the register out however the
extra bit is provided before the CRC. This affects all data registers. The data register specifying
the debug chain has the format in Figure 4.13.

Data register shifted in

[l cRc [CH

1211 43 0

Data register shifted out

| CRC [[Ch|

12 543 0
Figure 4.13. JTAG chain data register actual implementation.

The formats of the data registers used with the RISC_DEBUG and WISHBONE debug chains are
the same, as shown in Figure 4.14.

Data register shifted in

[[crC | Data W] SPR/Address \
7372 6564 33 32 31 0

Data register shifted out

| CRC [] Data (W] SPR/Address \
73 666564 33 32 31 0

Figure 4.14. JTAG RISC_DEBUG> and WISHBONE debug chains data register actual
implementation.

The format of the data register used with the REGISTER debug chain is shown in Figure 4.15.

Data register shifted in

[] CRC | Data |W|Reg|
4645 3837 654 0

Data register shifted out

| CRC || Data |W|Reg|
46 393837 65 4 0

Figure 4.15. JTAG REGISTER> debug chain data register actual implementation.

4.6.3. Hardware Single Step

This is a genuine bug in the interaction between Debug Unit and CPU. When hardware single
step is used, the pipeline can become confused, leading to multiple executions of the same
instruction, and eventually to the same instruction being executed forever.

Hardware single-step is always used in two places. First when restarting after a breakpoint to
execute the instruction that was replaced by 1.trap. GDB single steps the instruction, then
replaces it with 1.trap, so the breakpoint can be used again.

Secondly GDB uses single step for the stepi command.

A sequence of stepi commands illustrates the problem:

29 Copyright © 2009 Embecosm Limited

ECOSM

(gdb) si

0x00001224 in simputs (str=0x0) at utils.c:102
{

0x00001228

102
(gdb) si

(gdb) si

0x00001228

(gdb) si

0x0000122c

(gdb) si

0x00001230

(gdb) si

0x00001230

(gdb) si

0x00001230

(gdb) si

0x00001230

102

102

102

102

102

102

102

The VCD trace in Figure 4.16 shows the pipeline failing to fill correctly after some of the single

steps

Time

clk=1

Jtag_tok-

1

dibg stall-o

if_pe[31:
id_pe[3l:
ex_pc[31:
wio_pe [31:

0]=00001230
0]1=0000122C
0]=00001228
0]-00001228

if_insan[31:0]-DTE21FEC

1|
"
8
o
5
i
ot

:0]=D4014800

ex_insn[31:0]=5C410038

Figure 4.16.

in=n[31:0]=-2C410038

lilm

00001+ {p0001224

)00O01728

000012 2C

DO001230

00001720

J0oo01zze

00001ZzC

00001230

00001 + (00001220

00001724

¥OO0D1228

O0001ZZC,

00001230

000601 + {00D01300

\00001720

0001224

DO001228

¥ODOD0122C

00001230

14610+ {D4011004

414610000

{D4014800

DIEZIFFC

14410+ {9CZ1FECE

{9C410038

04014800

DTEZIEEC

15000+ {14410000

)Da011004

¥3CA1003E

DA014800,

WDTEZLIFEC

O7FFE+ (15000000

{9CZ1FFCE

YD4011004

90410038

04014800

DIEZIFFC

VCD trace of the OpenRISC 1000 pipeline after multiple single steps.

From around 140ms, the pipeline refill starts to go wrong. The ticks on the dbg_stall line are
the individual single steps. By 180ms the pipeline is completely filled with the instruction at

address 0x1230 (Oxd7e21ffc, 1.sw -4(r2),r3).

Unfortunately single stepping is sometimes used by GDB in other circumstances. For example
a step (high level instruction step) or nextcommand> may use multiple steps rather than
setting and running to a temporary breakpoint. Under these circumstances the GDB client
will hang, because the target does not seem to reach its target.

There is a workaround, which is to use ctrl-C (twice) to break the connection and then
reconnect. The OpenRISC 1000 is stalled at the time, so on reconnection will be at the same
location. Using continue allows the pipeline to refill correctly.

30

Copyright © 2009 Embecosm Limited

ECOSM

(gdb) s

ACACInterrupted while waiting for the program.

Give up (and stop debugging it)? (y or n) y

(gdb) target remote :51000

Remote debugging using :51000

0x00001230 in simputs (str=0x1350 "Hello World!\n") at utils.c:102
102 {

(gdb) ¢

Continuing.

Breakpoint 4, simputs (str=0x1350 "Hello World!\n") at utils.c:105
105 for(i = 9; str[i] != "\@"' ; i++) {
(gdb)

Solving the Problem

The solution is to modify the handling of the RSP step (s) packet, so that two consecutive
hardware single-step operations are never used. A second step is implemented using 1.trap.

This is not completely trivial, since the case where the second step would have occurred on a
branch delay slot must be handled. Fortunately under this circumstance the single step bug
does not seem to occur, so it is sufficient to permit a second single step in the case where
that step occurs on a delay slot.

The example code distributed with this application note does not have this solution
implemented. It is left as an exercise for the reader.

31 Copyright © 2009 Embecosm Limited

ECOSM

Chapter 5. Optimizing the GDB Server

As noted earlier, any JTAG action takes many hundreds of system clock cycles. This is due to
the serial nature of the protocol and the JTAG clock typically running ten times slower than
the system clock.

There are thus two ways to improve performance:
1. Minimize the number of JTAG actions used.

2. Maximize the performance of the underlying cycle accurate model.

5.1. Assessing Performance

To test performance of the GDB server, a GDB script is used with a small program (in sw/test-
progs/perf.c) which exercises the model by computing Ackermann's function [1] [2]. This is
driven by a GDB script in sw/test-progs/gdb-script. This script sets a breakpoint on the
entry point to a, which computes Ackermann's function. It then carries out the following tests:

. Continues past the breakpoint 50 times. This tests the efficiency of running to a
breakpoint.
. Disassembles the function 5 times. This tests the efficiency of memory access.

. Prints the CPU configuration register 10 times. This tests the efficiency of SPR access.

GDB is run in silent batch mode:
or32-uclinux-gdb -batch -batch-silent --command gdb-script

The output is completely suppressed, removing any client I/O overhead. To measure the
client's speed of loading (a measure of both model and memory access efficiency), the "Hello
World" program from Section 4.5.1 is loaded manually.

5.1.1. Load Generated by Debugging Commands

The raw load generated by the debugging script can be measured by comparing the number of
cycles taken using the script, with the number of cycles taken when just loading the program
and running to completion. The results, using a server with no compiler optimization (-00)
and no caching of memory or SPRs (see Section 5.2) are shown in Table 5.1.

Run Description Cycles Time| Performance
No optimization, no cache, no debug script 1,491,415 45.83 s 33 kHz
No optimization, no cache, with debug script 12,593,861 374.02 s 34 kHz

Table 5.1. Load generated by the GDB debugging script.

As can be seen the debugging commands add over 11 million cycles to the server model in
this baseline configuration.

5.2. Caching SPR and Memory Access

When stalled, SPR and memory values cannot change. It therefore makes sense to cache these
values to eliminate JTAG activity on duplicate accesses when stalled. The classes to provide
this functionality (SprCache and MemCache) were described in Section 4.3.

32 Copyright © 2009 Embecosm Limited

ECOSM

Caching can be disabled when building the model by defining NOCACHE on the command line
or in DebugUnit.h.

Caution
@ The Next Program Counter NPC is always cached for the reasons described above
in Section 4.6.1.

The effect of caching on server performance and client load times can be seen in Table 5.2.
This compares the performance of an unoptimized server with and without caches.

Run Description Cycles Time Perf| Load Rate
No optimization, no cache 12,593,861 374.02 s 34 kHz| 161 bytes/s
No optimization, with cache 8,097,241 257.34 s 31 kHz| 164 bytes/s

Table 5.2. Effect of SPR and memory caches on GDB server and client performance.

The extra cycles due to the debugging load have been reduced by 4.5 million, just over 40%.
The time taken to load a program is unchanged. The memory cache cannot help, since this
is an initial load.

5.3. Compiler Optimization

As was shown in Embecosm Application Note 6 High Performance SoC Modeling with
Verilator: A Tutorial for Cycle Accurate SystemC Model Creation and Optimization [10], compiler
optimization has a very significant impact on performance.

The effect of compiler optimizations can be seen in Table 5.3. This compares the performance
using no optimization, optimization using -0s (the best for single pass optimization) and
profile directed optimization using -03 and profile statistics from a debugging run using the
Ackermann's Function test program. To build a model using profile directed optimization with
optimization level -03 use the run-fast target of the Makefile in the distribution.

make run-fast OPT=-03

Run Description Cycles Time Perf| Load Rate
No optimization(-O0) 8,097,241 257.34 s 31 kHz| 164 bytes/s
Single pass optimization (-Os) 8,097,241 124.71 s 65 kHz| 383 bytes/s
Profile directed optimization (-O3) 8,097,241 92.69 s 87 kHz| 487 bytes/s

Table 5.3. Effect of compiler optimization on GDB server and client performance.

Using a single optimization pass more than doubles performance of both the server and client
load times. Using profile directed optimization almost trebles performance.

5.4. Overhead of the RSP Debugger Interface

There is a performance overhead to the RSP interface. It involves adding the JTAG module, with
a thread sensitive to each JTAG clock and the GDB server module to process all the packets.

Even with minimal debugging activity (just loading the program and running to completion),
the fastest the Ackermann's function model would execute was 93 kHz. The same optimized
model was used without the debug interface in Embecosm Application Note 6 and achieved
130 kHz.

33 Copyright © 2009 Embecosm Limited

ECOSM

This is an inescapable overhead. However it is independent of the size of the underlying model.
It shows significantly with the OpenRISC 1000, because of the efficiency of the underlying
processor model. With larger and more complex SoCs it would be a less significant overhead.

5.5. Summary of Performance Optimization
Optimization is essential to achieving good debugging performance.

. Caching Memory and SPRs yielded a 40% improvement in the overhead of debugging.

. Simple optimization with -0s more than doubled performance.
. Profile directed optimization nearly trebled performance.
. Overall, combining caching and and profile directed optimization, server execution time

fell from 374 s to 92 s, representing a four-fold improvement in performance.

34 Copyright © 2009 Embecosm Limited

ECOSM

Chapter 6. Summary

This application note has shown how to build and optimize a GDB RSP interface to a cycle
accurate model of a complete SoC in SystemC. The steps can be summarized as:

1. Implement an interface which can read and write RSP packets from and to TCP/IP

2. Implement a model for the target's debug interface, which generates JTAG register
actions.

3. Implement the main GDB server class, which maps actions requested in RSP packets to
the functionality of the debug interface.

4. Use caching to minimize the number of JTAG register actions

S. Use C++ compiler options to maximize the performance of the GDB server.

The result is a GDB interface to a cycle accurate SystemC model of a complete SoC, with a
performance which makes low-level firmware development a quite feasible activity.

Suggestions for corrections or improvements are welcomed. Please contact the author at
jeremy.bennett@embecosm.com.

35 Copyright © 2009 Embecosm Limited

mailto:jeremy.bennett@embecosm.com

ECOSM

Glossary

2-state

Hardware logic model which is based only on logic high and logic low (binary O and binary
1) values.
See also: 4-state.

4-state

Hardware logic model which considers unknown (X) and unproven (Z) values as well as
logic high and logic low (binary O and binary 1).
See also: 2-state.

big endian

A description of the relationship between byte and word addressing on a computer
architecture. In a big endian architecture, the least significant byte in a data word resides
at the highest byte address (of the bytes in the word) in memory.

The alternative is little endian addressing.

See also: little endian.

elaboration

In an event driven simulator, the analysis of source Verilog to create an executable which
will subsequently perform the simulation.

Joint Test Action Group (JTAG)

JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access
Port and Boundary-Scan Architecture for test access ports used for testing printed circuit
boards and chips using boundary scan.

This standard allows external reading of state within the board or chip. It is thus a natural
mechanism for debuggers to connect to embedded systems.

little endian

A description of the relationship between byte and word addressing on a computer
architecture. In a little endian architecture, the least significant byte in a data word resides
at the lowest byte address (of the bytes in the word) in memory.

The alternative is big endian addressing.

See also: big endian.

Open SystemC Initiative (OSCI)
The industry standardization body for SystemC

System on Chip (SoC)
A silicon chip which includes one or more processor cores.

SystemC

A set of libraries and macros, which extend the C++ programming language to facilitate
modeling of hardware.

36 Copyright © 2009 Embecosm Limited

37

ECOSM

Standardized by the Open SystemC Initiative, who provide an open source reference
implementation.

See also: Open SystemC Initiative.

Copyright © 2009 Embecosm Limited

ECOSM

References

[1] Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen Mathematische Annalen
99, 1928, 118-133. doi:10.1007/BF01459088.

[2] Ackermann function. Wikipedia entry. en.wikipedia.org/wiki/Ackermann_function.
[3] ATM User-Network Interface Specification. ATM Forum, 1993.

[4] Clifford E Cummings. "full case parallel case", the Evil Twins of Verilog Synthesis. SNUG
1999 1999. www.sunburst-design.com/papers.

[5] Clifford E Cummings. Nonblocking Assignments in Verilog Synthesis, Coding Styles That
Killl SNUG 2000 2000. www.sunburst-design.com/papers.

[6] Embecosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain:
Installation Guide. Issue 3. Embecosm Limited, November 2008.

[7] Embecosm Application Note 3. Howto: Porting the GNU Debugger: Practical Experience
with the OpenRISC 1000 Architecture. Issue 2. Embecosm Limited, November 2008.

[8] Embecosm Application Note 4. Howto: GDB Remote Serial Protocol: Writing a RSP Server.
Issue 2. Embecosm Limited, November 2008.

[9] Embecosm Application Note 5. Using JTAG with SystemC: Implementation of a Cycle
Accurate Interface. Issue 1. Embecosm Limited, January 2009.

[10] Embecosm Application Note 6. High Performance SoC Modeling with Verilator: A Tutorial
for Cycle Accurate SystemC Model Creation and Optimization. Issue 1. Embecosm
Limited, February 2009.

[11] Embecosm Software Package 4. Cycle Accurate SystemC JTAG Interface: Reference
Implementation. Embecosm Limited, January 2009. Available for free download from
the Embecosm website at www.embecosm.com .

[12] John Gillmore and Stan Shebbs. GDB Internals: A guide to the internals of the GNU
debugger, issue 2. Cygnus Solutions 2006 . http://sourceware.org/gdb/current/
onlinedocs/gdbint_toc.html

[13] GTKWave 3.1 Wave Analyzer User's Guide. February 2008. gtkwave.sourceforge.net/

[14] IEEE Standard SystemC® Language: Reference Manual. IEEE Computer Society
2005 . IEEE Std 1666™-2005. Available for free download from standards.ieee.org/
getieee/ 1666/index.html .

[15] IEEE Std 1149.1 (JTAG) Testability: Primer. Texas Instruments Semiconductor Group
1997. Available for free download from the Texas Instruments website at focus.ti.com/
lit/an/ssya002d/ssya002d.pdf .

[16] IEEE standard test access port and boundary-scan architecture IEEE Computer Society
2001 (reaffirmed 2008) . IEEE Std 1149.1™-2001 .

[17] Don Mills and Clifford E Cummings. RTL Coding Styles That Yield Simulation and
Synthesis Mismatches SNUG 1999 1999. www.sunburst-design.com/papers.

[18] The OpenRISC Reference Platform System-on-Chip. Available for download from
WWW.OPEncores.org

[19] Wilson Snyder. Verilator 3.700. January 2009. www.veripool.org/wiki/verilator

38 Copyright © 2009 Embecosm Limited

http://dx.doi.org/10.1007%2FBF01459088
http://en.wikipedia.org/wiki/Ackermann_function
http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/
http://www.embecosm.com
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://gtkwave.sourceforge.net/
http://standards.ieee.org/getieee/1666/index.html
http://standards.ieee.org/getieee/1666/index.html
http://focus.ti.com/lit/an/ssya002d/ssya002d.pdf
http://focus.ti.com/lit/an/ssya002d/ssya002d.pdf
http://www.sunburst-design.com/papers/
http://www.opencores.org
http://www.veripool.org/wiki/verilator

ECOSM

[20] Richard Stallman and the GCC Developer Community. Using the GNU Compiler Collection
(GCQ), Free Software Foundation 2008 . http://gcc.gnu.org/onlinedocs/gcc/

[21] Richard Stallman, Roland Pesch, Stan Shebbs, et al. Debugging with GDB: The
GNU Source-Level Debugger, issue 9. Free Software Foundation 2008 . http://
sourceware.org/gdb/current/onlinedocs/gdb_toc.html

[22] SystemC Version 2.0 User Guide. Open SystemC Initiative, 2002. Available for
download from www.systemc.org

[23] Dimitri van Heesch. Doxygen: Source code documentation generator tool, 2008 .
www.doxygen.org

[24] Reinhold Weicker. Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM, 27, 10, October 1984, 1013-1030.

39 Copyright © 2009 Embecosm Limited

http://gcc.gnu.org/onlinedocs/gcc/
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://www.systemc.org
http://www.doxygen.org

	Integrating the GNU Debugger with Cycle Accurate Models
	Table of Contents
	Chapter 1. Introduction
	1.1. Why Use Cycle Accurate Modeling
	1.2. Target Audience
	1.3. Open Source
	1.4. Further Sources of Information
	1.4.1. Written Documentation
	1.4.2. Other Information Channels

	1.5. About Embecosm

	Chapter 2. Overview of Technologies and Tools
	2.1. OSCI SystemC IEEE 1666
	2.2. Cycle Accurate Modeling
	2.2.1. Level of Modeling Detail
	2.2.2. Tool Support
	2.2.3. Modeling Language

	2.3. OpenCores and the OpenRISC Project
	2.3.1. The OpenRISC Reference Platform System-on-Chip (ORPSoC)

	Chapter 3. The Target Model
	3.1. JTAG Interface
	3.2. Embedded Software Applications
	3.3. Building the Model

	Chapter 4. The GDB Remote Serial Protocol Server
	4.1. System Class and Module Structure
	4.2. The RSP Packet Interface, RspConnection
	4.2.1. RspConnection class
	4.2.2. RspPacket class

	4.3. Modeling the OpenRISC 1000 Debug Unit
	4.3.1. How JTAG is used by the OpenRISC 1000 Debug Unit
	JTAG Debug Chains
	The RISC_DEBUG Debug Chain
	The REGISTER Debug Chain
	The WISHBONE Debug Chain

	4.3.2. DebugUnitSC class
	4.3.3. SprCache class
	4.3.4. MemCache class

	4.4. Overall GDB Server Behavior
	4.4.1. GdbServerSC class
	The SystemC Thread, rspServer

	4.4.2. MpHash Class
	4.4.3. MpEntry Struct

	4.5. Building the Complete System
	4.5.1. An Example Debugging Session.

	4.6. Foibles of Real Hardware
	4.6.1. Setting the Next Program Counter SPR
	4.6.2. JTAG register bit width
	4.6.3. Hardware Single Step
	Solving the Problem

	Chapter 5. Optimizing the GDB Server
	5.1. Assessing Performance
	5.1.1. Load Generated by Debugging Commands

	5.2. Caching SPR and Memory Access
	5.3. Compiler Optimization
	5.4. Overhead of the RSP Debugger Interface
	5.5. Summary of Performance Optimization

	Chapter 6. Summary
	Glossary
	References

