
Howto: Porting newlib
A Simple Guide

Jeremy Bennett
Embecosm

Application Note 9. Issue 1
Publication date July 2010

http://www.embecosm.com

ii Copyright © 2010 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Embecosm (www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

The software examples written by Embecosm and used in this document are licensed under the
GNU General Public License (GNU General Public License). For detailed licensing information
see the file COPYING in the source code of the examples.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com
http://www.gnu.org/licenses/gpl.html

iii Copyright © 2010 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. Target Audience .. 1
1.2. Examples .. 1
1.3. Further information .. 1
1.4. About Embecosm Application Notes .. 1

2. newlib within the GNU Tool Chain .. 3
2.1. The Unified Source Tree ... 3

2.1.1. Incorporating Newlib within the Tool Chain Build 5
3. Overview of newlib .. 7

3.1. The relationship between libgloss and newlib ... 7
3.2. The C Namespace and Reentrant Functions .. 7
3.3. Adding a new Target to Newlib ... 8

3.3.1. Extending configure.host for a New Target .. 8
4. Modifying newlib ... 10

4.1. The Machine Directory .. 10
4.1.1. Updating the Main Machine Directory Configuration files 10
4.1.2. Implementing the setjmp and longjmp functions. 11
4.1.3. Updating the Target Specific Machine Directory Configuration files 15

4.2. Changing Headers .. 16
4.2.1. IEEE Floating Point .. 16
4.2.2. setjmp Buffer Size .. 17
4.2.3. Miscellaneous System Definitions ... 18
4.2.4. Overriding Other Header Files .. 18

5. Modifying libgloss ... 19
5.1. The Platform Directory .. 19

5.1.1. Ensuring the Platform Directory is Configured 19
5.2. The C Runtime Initialization, crt0.o ... 20

5.2.1. Exception vector setup ... 20
5.2.2. The _start Function and Stack Initialization .. 22
5.2.3. Cache Initialization ... 24
5.2.4. Clearing BSS .. 25
5.2.5. Constructor and Destructor Handling ... 25
5.2.6. C Initialization Functions ... 26
5.2.7. Invoking the main program .. 26

5.3. Standard System Call Implementations ... 26
5.3.1. Error Handling ... 27
5.3.2. The Global Environment, environ ... 27
5.3.3. Exit a program, _exit .. 27
5.3.4. Closing a file, close ... 28
5.3.5. Transfer Control to a New Process, execve .. 28
5.3.6. Create a new process, fork .. 29
5.3.7. Provide the Status of an Open File, fstat ... 29
5.3.8. Get the Current Process ID, getpid .. 30
5.3.9. Determine the Nature of a Stream, isatty .. 30
5.3.10. Send a Signal, kill .. 31
5.3.11. Rename an existing file, link ... 32
5.3.12. Set Position in a File, lseek .. 32
5.3.13. Open a file, open .. 33
5.3.14. Read from a File, read .. 34
5.3.15. Allocate more Heap, sbrk .. 36

iv Copyright © 2010 Embecosm Limited

5.3.16. Status of a File (by Name), stat ... 38
5.3.17. Provide Process Timing Information, times .. 39
5.3.18. Remove a File's Directory Entry, unlink .. 39
5.3.19. Wait for a Child Process, wait .. 39
5.3.20. Write to a File, write .. 40

5.4. Reentrant System Call Implementations .. 42
5.5. BSP Configuration and Make file; ... 42

5.5.1. configure.in for the BSP ... 43
5.5.2. Makefile.in for the BSP ... 44

5.6. The Default BSP, libnosys ... 47
6. Configuring, Building and Installing Newlib and Libgloss ... 48

6.1. Configuring Newlib and Libgloss .. 48
6.2. Building Newlib and Libgloss ... 48
6.3. Testing Newlib and Libgloss .. 48
6.4. Installing Newlib and Libgloss ... 48

7. Modifying the GNU Tool Chain .. 49
7.1. Putting Newlib in a Custom Location .. 49
7.2. Changes to GCC ... 49

7.2.1. Adding Machine Specific Options for Newlib ... 49
7.2.2. Updating Spec Definitions .. 50

7.3. Changes to the GNU Linker .. 52
8. Testing Newlib and Libgloss ... 54

8.1. Testing Newlib .. 54
8.1.1. Checking Physical Hardware .. 56

8.2. Testing Libgloss ... 56
9. Summary Checklist ... 58
Glossary ... 60
References .. 61

1 Copyright © 2010 Embecosm Limited

Chapter 1. Introduction
Newlib is a C library intended for use on embedded systems. It is a conglomeration of several
library parts, all under free software licenses that make them easily usable on embedded
products.

1.1. Target Audience
Porting newlib is not difficult, but advice for the beginner is thin on the ground. This
application note is intended for software engineers porting newlib for the first time.

The detail of all the steps needed are covered here, and have been tested using newlib versions
1.17.0 and 1.18.0 with the OpenRISC 1000 .

For those who already have some experience, the entire porting process is summarized in the
final chapter, with links back to the main document (see Chapter 9). It's a useful checklist
when carrying out a new port.

1.2. Examples
This application note includes examples from the port of newlib to the OpenRISC 1000
 architecture, originally by Chris Bower, then of Imperial College, London, and subsequently
extensively updated by Jeremy Bennett of Embecosm.

The examples are two Board Support Packages (BSP) for use with the OpenRISC 1000
 architectural simulator Or1ksim by the same two authors.

At the time of writing the OpenRISC 1000 implementation is not part of the main newlib
distribution. It can be downloaded from OpenCores (www.opencores.org).

1.3. Further information
The main source of information is the newlib website (sourceware.org/newlib). This includes a
FAQ, which has brief instructions on porting newlib and documentation for libc [1] and libm,
the two libraries making up newlib. The libc documentation is particularly useful, because
it lists the system calls which must be implemented by any new port, including minimal
implementations.

The newlib README is another source of information. Key header files within the source also
contain useful commenting, notably ieeefp.h and reent.h.

There is also a mailing list, <newlib@sourceware.org> where questions can be asked, or new
ports submitted.

This application note does not cover the detail of testing newlib on physical hardware. That
subject is well covered by Dan Kegel's Crosstool project [2].

This application note has drawn heavily on these sources, and the author would like to thank
the providers of that original information.

1.4. About Embecosm Application Notes
Embecosm is a consultancy specializing in hardware modeling and open source tool chains for
the embedded market. If we can ever be of help, please get in touch at <sales@embecosm.com>.

As part of its commitment to the open source community, Embecosm publishes a series of
free and open source application notes, designed to help working engineers with practical
problems.

http://www.opencores.org
http://sourceware.org/newlib/
mailto:newlib@sourceware.org

2 Copyright © 2010 Embecosm Limited

Feedback is always welcome, which should be sent to <info@embecosm.com>.

3 Copyright © 2010 Embecosm Limited

Chapter 2. newlib within the GNU Tool Chain
Newlib is intended for use with the GNU tool chain. If newlib is included within the build of
the GNU tool chain, then all the libraries will be built and installed in the correct places to
be found by GCC

2.1. The Unified Source Tree
The three separate packages, binutils, GCC and GDB are all taken from a common source
tree. GCC and GDB both use many libraries from binutils. It is convenient to reassemble
that source tree and make a single build of all the tools together.

The easiest way to achieve this is to link all the top level directories in each package into a
single unified directory, leaving out any duplicated files or directories.

The following bash script will take unpacked distributions of binutils GCC and GDB and link
them into a single directory, srcw.

4 Copyright © 2010 Embecosm Limited

#!/bin/bash

component_dirs='binutils-2.18.50 gcc-4.2.2 gdb-6.8'
unified_src=srcw

cd ${unified_src}
ignore_list=". .. CVS .svn"

for srcdir in ${component_dirs}
do
 echo "Component: $srcdir"
 case srcdir
 in
 /* | [A-Za-z]:[\\/]*)
 ;;

 *)
 srcdir="../${srcdir}"
 ;;
 esac

 files=`ls -a ${srcdir}`

 for f in ${files}
 do
 found=

 for i in ${ignore_list}
 do
 if ["$f" = "$i"]
 then
 found=yes
 fi
 done

 if [-z "${found}"]
 then
 echo "$f ..linked"
 ln -s ${srcdir}/$f .
 fi
 done

 ignore_list="${ignore_list} ${files}"
done

cd ..

The entire tool chain can then be configured and built in a separate directory. The configure
script understands to pass on top level arguments to subsidiary configuration scripts. For
example to configure to build a C only tool chain for the 32-bit OpenRISC 1000 architecture
to be installed in /opt/or32-elf, the following would be appropriate.

5 Copyright © 2010 Embecosm Limited

mkdir build
cd build
../src/configure --target=or32-elf --enable-languages=c --prefix=/opt/or32-elf
cd ..

Each tool can be built with its own specific target within that build directory

cd build
make all-build all-binutils all-gas all-ld all-gcc all-gdb
cd ..

Note
The initial make target, all-build is used to build some of the baseline libraries
and tools used throughout the tool chain.

Similarly the tools can be installed using the following:

cd build
make install-build install-binutils install-gas install-ld install-gcc \
 install-gdb
cd ..

2.1.1. Incorporating Newlib within the Tool Chain Build

Newlib can be linked into the unified source directory in the same fashion. All that is needed
is to add newlib to the component directories in the linking script.

#!/bin/bash

component_dirs='binutils-2.18.50 gcc-4.2.2 newlib-1.18.0 gdb-6.8'
unified_src=srcw
...

The configuration command should also specify that this is a build using newlib

mkdir build
cd build
../src/configure --target=or32-elf --enable-languages=c --with-newlib \
 --prefix=/opt/or32-elf
cd ..

Two new targets are needed for newlib, one to build newlib itself, and one to build any board
support packages using libgloss (see Chapter 3 for an explanation of how libgloss is used
with newlib).

6 Copyright © 2010 Embecosm Limited

cd build
make all-build all-binutils all-gas all-ld all-gcc all-target-newlib \
 all-target-libgloss all-gdb
cd ..

Similarly additional targets are needed for installation.

cd build
make install-build install-binutils install-gas install-ld install-gcc \
 install-target-newlib install-target-libgloss install-gdb
cd ..

7 Copyright © 2010 Embecosm Limited

Chapter 3. Overview of newlib

3.1. The relationship between libgloss and newlib
Newlib is now divided into two parts. The main newlib directory contains the bulk of the
code for the two main libraries, libc and libm, together with any architecture specific code
for particular targets.

The libgloss directory contains code specific to particular platforms on which the library
will be used, generally referred to as the Board Support Package (BSP). Any particular target
architecture may have multiple BSPs, for example for different hardware platforms, for a
simulator etc.

The target architecture specific code within the newlib directory may be very modest - possibly
as little as an implementation of setjmp and a specification of the IEEE floating point format
to use.

The board support package is more complex. It requires an implementation of eighteen system
calls and the definition of one global data structure, although the implementation of some of
those system calls may be completely trivial.

Note
The separation of BSP implementation into libgloss is relatively recent.
Consequently the source tree contains a number of older target implementations
where the BSP is entirely within newlib. When looking for examples, be sure
to choose an architecture which has been implemented through libgloss. The
OpenRISC 1000 implementation is one such architecture.

3.2. The C Namespace and Reentrant Functions
The BSP implements the system calls—functions like close, write etc. It is possible for the
BSP to implement these directly, but these will then be defined in the main C namespace.
It is perfectly permissible for the user to replace these functions, and the user versions take
precedence, which requires some care at link time.

Newlib allows the implementer instead to provide namespace clean versions of these functions
by prefixing them with an underscore. Newlib will ensure that the system calls map to these
namespace clean version (i.e. a call to close becomes a call to _close) unless the user has
reimplemented that function themselves.

A reentrant function may be safely called from a second thread, while a first thread of control
is executing. In general a function that modifies no static or global state, will be reentrant.

Many system calls are trivially reentrant. However for some calls, reentrancy is not easy
to provide automatically, so reentrant versions are provided. Thus for close, there is the
reentrant version close_r. The reentrant versions take an extra argument, a reentrancy
structure, which can be used to ensure correct behavior, by providing per-thread versions of
global data structures.

It is worth noting that use of the global error value, errno is a common source of non-
reentrancy. The standard reentrancy structure includes an entry for a per-thread value of
errno.

For many systems, the issue of reentrancy does not arise. If there is only ever one thread of
control, or if separate threads have their own address space there is no problem.

8 Copyright © 2010 Embecosm Limited

However it's worth remembering that even a bare metal system may encounter issues with
reentrancy if event handlers are allowed to use the system calls.

Newlib gives considerable flexibility, particularly where namespace clean versions of the basic
system calls are implemented. The implementer can choose to provide implementations of the
reentrant versions of the functions. Alternatively newlib can provide reentrancy at the library
level, but mapping the calls down the system calls, which are not themselves reentrant. This
last can often prove a practical solution to the problem.

3.3. Adding a new Target to Newlib
Adding a new architecture to newlib requires the following steps.

1. Provide a machine specific directory within the newlib directory for architecture specific
code, notably the setjmp implementation.

2. Provide a platform directory for BSP implementation(s) within the libgloss directory.
The code implementing systems calls for each BSP is placed in this directory.

3. Update the configure.host file in the newlib directory to point to the machine and
platform directories for the new target.

3.3.1. Extending configure.host for a New Target
The configure.host file needs changes in two places, to identify the architecture specific
machine directory and the platform directory for BSP implementations.

The machine name is specified in a case switch on the ${host_cpu} early on in the file. Add
a new case entry defining machine_type for the architecture. Thus for OpenRISC 1000 32-
bit architecture we have:

 or32)
 machine_dir=or32
 ;;

This specifies that the machine specific code for this architecture will be found in the directory
newlib/libc/machine/or32.

The platform directory and details are specified in a subsequent case switch on ${host} (i.e.
the full triplet, not just the CPU type). For the 32-bit OpenRISC 1000 we have the following.

 or32-*-*)
 syscall_dir=syscalls
 ;;

This is the simplest option, specifying that the BSPs for all OpenRISC 1000 32-bit targets
will implement namespace clean system calls, and rely on newlib to map reentrant calls down
to them. The directory name for the BSP implementations will match that of the machine
directory, but within the libgloss directory. So for OpenRISC 1000 32-bit targets; the BSP
implementations are in libgloss/or32.

There are four common alternatives for specifying how the BSP will be implemented.

1. The implementer defines reentrant namespace clean versions of the system calls.
In this case, syscall_dir is set to syscalls as above, but in addition, -

9 Copyright © 2010 Embecosm Limited

DREENTRANT_SYSCALLS_PROVIDED is added to newlib_cflags in configure.host. For the
OpenRISC 1000 32-bit target we could have done this with:

 or32-*-*)
 syscall_dir=syscalls
 newlib_cflags="${newlib_cflags} -DREENTRANT_SYSCALLS_PROVIDED"
 ;;

For convenience, stub versions of the reentrant functions may be found in the libc/
reent directory. These are in fact the functions used if the reentrant system calls are
not provided, and map to the non-reentrant versions.

2. The implementer defines non-reentrant, but namespace clean versions of the system
calls. This is the approach we have used with the OpenRISC 1000 and all
the implementer needs to do in this case is to set syscall_dir to syscalls in
configure.host. newlib will map reentrant calls down to the non-reentrant versions.

3. The implementer defines non-reentrant, regular versions of the system calls (i.e. close
rather than _close). The library will be neither reentrant, not namespace clean,
but will work. In this case, -DMISSING_SYSCALL_NAMES is added to newlib_cflags in
configure.host. For the OpenRISC 1000 we could have done this with:

 or32-*-*)
 newlib_cflags="${newlib_cflags} -DMISSING_SYSCALL_NAMES"
 ;;

Note in particular that syscall_dir is not defined in this case.

4. The implementer defines non-reentrant, regular versions of the system calls (i.e. close
rather than _close). The reentrant system calls are mapped onto these functions. The
library will not be namespace clean, but will offer reentrancy at the library level. In this
case, -DMISSING_SYSCALL_NAMES and -DREENTRANT_SYSCALLS_PROVIDED are both added to
newlib_cflags in configure.host. For the OpenRISC 1000 we could have done this with:

 or32-*-*)
 newlib_cflags="${newlib_cflags} -DMISSING_SYSCALL_NAMES"
 newlib_cflags="${newlib_cflags} -DREENTRANT_SYSCALLS_PROVIDED"
 ;;

Note in particular that syscall_dir is not defined in this case.

10 Copyright © 2010 Embecosm Limited

Chapter 4. Modifying newlib
Changes that depend on the architecture, and not the particular platform being used, are
made in the newlib directory. These comprise changes to standard headers and custom code
for the architecture.

4.1. The Machine Directory
Within the newlib directory, machine specific code is placed in a target specific directory, libc/
machine/arch.

The only code that has to be there is the implementation of setjmp and longjmp, since
the implementation of these two functions invariably requires target specific machine code.
However any other target specific code may also be placed here.

4.1.1. Updating the Main Machine Directory Configuration files
The machine directory uses GNU autoconf and automake for configuration. There is a
configuration template file (configure.in) and Makefile template (Makefile.am) in the main
machine directory (libc/machine within the newlib directory).

configure.ac contains a case statement configuring the target specific subdirectories. This
must be updated to configure the subdirectory for the new target. Thus for the OpenRISC 1000
 we have the following.

if test -n "${machine_dir}"; then
 case ${machine_dir} in
 a29k) AC_CONFIG_SUBDIRS(a29k) ;;
 arm) AC_CONFIG_SUBDIRS(arm) ;;

 <other machines not shown>

 necv70) AC_CONFIG_SUBDIRS(necv70) ;;
 or32) AC_CONFIG_SUBDIRS(or32) ;;
 powerpc) AC_CONFIG_SUBDIRS(powerpc) ;;

 <other machines not shown>

 xstormy16) AC_CONFIG_SUBDIRS(xstormy16) ;;
 z8k) AC_CONFIG_SUBDIRS(z8k) ;;
 esac;
fi

Makefile.am is standard and will not need to be changed. Having changed the configuration
template, the configuration file, configure, will need to be regenerated. This only requires
running autoconf

autoconf

Since Makefile.am has not been changed there is no need to run automake

11 Copyright © 2010 Embecosm Limited

4.1.2. Implementing the setjmp and longjmp functions.
setjmp and longjmp are a pair of C function facilitating cross-procedure transfer of control.
Typically they are used to allow resumption of execution at a known good point after an error.

Both take as first argument a buffer, which is used to hold the machine state at the jump
destination. When setjmp is called it populates that buffer with the current location state
(which includes stack and frame pointers and the return address for the call to setjmp, and
returns zero.

longjmp takes a buffer previously populated by setjmp. It also takes a (non-zero) second
argument, which will ultimately be the result of the function call. longjmp restores the machine
state from the buffer. It then jumps to the return address it has just restored, passing its
second argument as the result. That return address is the return address from the original
call to setjmp, so the effect will be as if setjmp has just returned with a non-zero argument.

setjmp and longjmp are typically used in a top level function in the following way.

#include <setjmp.h>

...

 jmp_buf buf;

 if (0 == setjmp (buf))
 {
 normal processing passing in buf
 }
 else
 {
 error handling code
 }

...

During normal processing if an error is found, the state held in buf can be used to return
control back to the top level using longjmp.

#include <setjmp.h>

...

 if (error detected)
 {
 longjmp (buf, 1);
 }

...

The program will behave as though the original call to setjmp had just returned with result 1.

It will be appreciated that this is behavior that cannot usually be written in C. The
OpenRISC 1000 implementation is given as an example. This processor has 32 registers,

12 Copyright © 2010 Embecosm Limited

r0 through r31, each of 32-bits. r0 is always tied to zero, so need not be saved. r11 is the
function result register, which is always set by setjmp and longjmp, so also need not be saved.
In addition we should save and restore the machine's 32-bit supervision register, which holds
the branch flag.

Thus we need the buffer to be 31 32-bit words long. This is defined in the setjmp header (see
Section 4.2.2).

In the Application Binary Interface (ABI) for the OpenRISC 1000 , function arguments are
passed in registers r3 through r8 and the function return address is in r9.

When defining these two functions, in assembler, be aware of any prefix conventions used by
the C compiler. It is common for symbols defined in C to have an underscore prepended (this
is the case for the OpenRISC 1000). Thus in this case the assembler should define _setjmp
and _longjmp.

This is the implementation of setjmp.

 .global _setjmp
_setjmp:
 l.sw 4(r3),r1 /* Slot 0 saved for flag in future */
 l.sw 8(r3),r2
 l.sw 12(r3),r3
 l.sw 16(r3),r4
 l.sw 20(r3),r5
 l.sw 24(r3),r6
 l.sw 28(r3),r7
 l.sw 32(r3),r8
 l.sw 36(r3),r9
 l.sw 40(r3),r10 /* Skip r11 */
 l.sw 44(r3),r12
 l.sw 48(r3),r13
 l.sw 52(r3),r14
 l.sw 56(r3),r15
 l.sw 60(r3),r16
 l.sw 64(r3),r17
 l.sw 68(r3),r18
 l.sw 72(r3),r19
 l.sw 76(r3),r20
 l.sw 80(r3),r21
 l.sw 84(r3),r22
 l.sw 88(r3),r23
 l.sw 92(r3),r24
 l.sw 96(r3),r25
 l.sw 100(r3),r26
 l.sw 104(r3),r27
 l.sw 108(r3),r28
 l.sw 112(r3),r29
 l.sw 116(r3),r30
 l.sw 120(r3),r31

 l.jr r9
 l.addi r11,r0,0 /* Zero result */

13 Copyright © 2010 Embecosm Limited

In this simplified implementation, the status flags are not saved—that is a potential future
enhancement. All the general registers, with the exception of r0 (always zero) and r11 (result
register) are saved in the buffer, which, being the first argument, is pointed to by r3.

Finally the result register, r11 is set to zero and the function returns using r9 (the
OpenRISC 1000 has delayed branches, so the setting of r11 is placed after the branch to
return.).

The implementation of longjmp is slightly more complex, since the second argument will be
returned as the effective result from setjmp, unless the second argument is zero in which case
1 is used.

The result must be dealt with first and placed in the result register, r11, because the second
argument, in r4 will be subsequently overwritten when the machine state is restored. Similarly
we must ensure that r3, which holds the first argument pointing to the restore buffer must
itself be the last register restored.

14 Copyright © 2010 Embecosm Limited

 .global _longjmp
_longjmp:
 /* Sort out the return value */
 l.sfne r4,r0
 l.bf 1f
 l.nop

 l.j 2f
 l.addi r11,r0,1 /* 1 as result */

1: l.addi r11,r4,0 /* val as result */

 /* Restore all the other registers, leaving r3 to last. */
2: l.lwz r31,120(r3)
 l.lwz r30,116(r3)
 l.lwz r29,112(r3)
 l.lwz r28,108(r3)
 l.lwz r27,104(r3)
 l.lwz r26,100(r3)
 l.lwz r25,96(r3)
 l.lwz r24,92(r3)
 l.lwz r23,88(r3)
 l.lwz r22,84(r3)
 l.lwz r21,80(r3)
 l.lwz r20,76(r3)
 l.lwz r19,72(r3)
 l.lwz r18,68(r3)
 l.lwz r17,64(r3)
 l.lwz r16,60(r3)
 l.lwz r15,56(r3)
 l.lwz r14,52(r3)
 l.lwz r13,48(r3)
 l.lwz r12,44(r3)
 l.lwz r10,40(r3) /* Omit r11 */
 l.lwz r9,36(r3)
 l.lwz r8,32(r3)
 l.lwz r7,28(r3)
 l.lwz r6,24(r3)
 l.lwz r5,20(r3)
 l.lwz r4,16(r3)
 l.lwz r2,8(r3) /* Skip r3 */
 l.lwz r1,4(r3) /* Slot 0 saved for flag in future */
 l.lwz r3,12(r3) /* Now safe */

 /* Result is already in r11. Having restored r9, it will appear as
 though we have returned from the earlier call to _setjmp. The
 non-zero result gives it away though. */
 l.jr r9
 l.nop

15 Copyright © 2010 Embecosm Limited

The return address, stack pointer and frame pointer having been restored, the return from the
function, will place the execution point immediately after the original call to setjmp.

The following is a simple test program, which can be used to verify that setjmp and longjmp
are working correctly.

#include <setjmp.h>
#include <stdio.h>

void
testit (jmp_buf env,
 int prev_res)
{
 int res = (0 == prev_res) ? prev_res : prev_res + 1;

 printf ("Long jumping with result %d\n", res);
 longjmp (env, res);

} /* testit () */

int
main (int argc,
 char *argv[])
{
 jmp_buf env;

 int res = setjmp (env);

 printf ("res = 0x%08x\n", res);

 if (res > 1)
 {
 return 0;
 }

 testit (env, res);

 return 256; /* We should never actually get here */

} /* main () */

4.1.3. Updating the Target Specific Machine Directory Configuration files
configure.in and Makefile.am files also be needed for the target specific directory (i.e. libc/
machine/target within the newlib directory). These are generally quite standard, and the
easiest approach is to copy the versions used for the fr30 architecture. Modern practice is
to use the file name configure.ac rather than configure.in, but either will be accepted by
autoconf.
Makefile.am should be modified if necessary to specify the source files (for example setjmp.S
and longjmp.S). More complex implementations may require modifications to configure.in
as well.

16 Copyright © 2010 Embecosm Limited

For example the OpenRISC 1000 machine directory (libc/machine/or32 within the newlib
directory) contains the following.

AUTOMAKE_OPTIONS = cygnus

INCLUDES = $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS)

AM_CCASFLAGS = $(INCLUDES)

noinst_LIBRARIES = lib.a

lib_a_SOURCES = longjmp.S setjmp.S
lib_a_CCASFLAGS=$(AM_CCASFLAGS)
lib_a_CFLAGS=$(AM_CFLAGS)

ACLOCAL_AMFLAGS = -I ../../.. -I ../../../..
CONFIG_STATUS_DEPENDENCIES = $(newlib_basedir)/configure.host

After any changes it will be necessary to run autoconf and/or automake to generate new
versions of configure and Makefile.in. autoconf requires a number of newlib specific macros.
These can be generated from the main newlib include file (acinclude.m4) by running aclocal.
The full set of commands would be.

aclocal -I ../../..
autoconf
automake --cygnus Makefile

aclocal only need to be run the first time the directory is created, or when moving the directory
to a new release of newlib. autoconf need only be run each time configure.in (or configure.ac)
is changed. automake need only be run each time Makefile.am is changed.

4.2. Changing Headers
There are two places, where header definitions must be modified for a new target architecture:
the specification of the IEEE floating point format used, and the specification of the setjmp
buffer size.

4.2.1. IEEE Floating Point

The floating point format is specified within the newlib directory in libc/include/machine/
ieeefp.h. Details of how the IEEE 754 format is implemented, and variations from the
standard, are specified by defining a number of C macros.

• __IEEE_BIG_ENDIAN
Define this macro if the floating point format is big endian.

!
Caution
One, and only one of __IEEE_BIG_ENDIAN and __IEEE_LITTLE_ENDIAN must be
defined.

• __IEEE_LITTLE_ENDIAN

17 Copyright © 2010 Embecosm Limited

Define this macro if the floating point format is little endian.

!
Caution
One, and only one of __IEEE_LITTLE_ENDIAN and __IEEE_BIG_ENDIAN must be
defined.

• __IEEE_BYTES_LITTLE_ENDIAN
Define this macro in addition to __IEEE_BIG_ENDIAN, where the words of a multi-word
IEEE floating point number are in big endian order, but the bytes within each word are
in little endian order.

• _DOUBLE_IS_32BITS
Define this if double precision floating point is represented using the 32-bit IEEE
representation.

• _FLOAT_ARG
Floating point arguments are usually promoted to double when passed as arguments.
If this is not the case, then this macro should be defined to the type actually used to
pass floating point arguments.

• _FLT_LARGEST_EXPONENT_IS_NORMAL
Define this if the floating point format uses the largest exponent for finite numbers rather
than NaN and infinities. Such a format cannot represent NaNs or infinities, but it's
FLT_MAX is twice the standard IEEE value.

• _FLT_NO_DENORMALS
Define this if the floating point format does not support IEEE denormalized numbers.
In this case, every floating point number with a zero exponent is treated as a zero
representation.

!
Caution
Two of these macros (_FLT_LARGEST_EXPONENT_IS_NORMAL and _FLT_NO_DENORMALS)
specify deviations from IEEE 754. These macros only work with single-precision
floating point and may not work correctly if hardware floating point support is used
(enabled by configuring with --enable-newlib-hw-fp).

For most targets it is sufficient to define just one of __IEEE_BIG_ENDIAN or
__IEEE_LITTLE_ENDIAN. The definitions should always be surrounded by a conditional, so they
are only used when the target architecture is selected. For example the OpenRISC 1000 is
big-endian, so we add the following to the header file.

#if defined(__or32__)
#define __IEEE_BIG_ENDIAN
#endif

4.2.2. setjmp Buffer Size

The implementation of setjmp and longjmp made use of a buffer to hold the machine state.
The size of that buffer is architecture dependent and specified within the newlib directory in
libc/include/machine/setjmp.h.

The header specifies the number of entries in the buffer and the size of each entry (as a C
type). So for the OpenRISC 1000 we use the following.

18 Copyright © 2010 Embecosm Limited

#if defined(__or32__)
/* Enough space for all regs except r0 and r11 and the status register */
#define _JBLEN 31
#define _JBTYPE unsigned long
#endif

As before, the definition is within a conditional, so it is only used when the target is the
OpenRISC 1000 32-bit architecture.

The type jmp_buf used with setjmp and longjmp is then defined as:

typedef _JBTYPE jmp_buf[_JBLEN];

4.2.3. Miscellaneous System Definitions
Various system wide constants are specified within the newlib directory in libc/include/sys/
config.h.

Very often the system default values are quite sufficient (this is the case for the
OpenRISC 1000). However target specific overrides of these values can be provided at the end
of this file. This file is included in all other source files, so can be used to redefine any of
the constants used in the system. The existing file gives numerous examples from different
machines.

!
Caution
A number of the constants defined here mirror those in GCC's limits.h file. They
should be kept consistent.

4.2.4. Overriding Other Header Files
If other headers must be overridden (not usually necessary with a simple port), then the
new versions can be placed in libc/machine/arch/machine within the newlib directory. These
header files will be used in preference to those in the standard distribution's machine header
directory.

19 Copyright © 2010 Embecosm Limited

Chapter 5. Modifying libgloss
Any target architecture may need multiple implementations, suited to different platforms on
which the code may run. The connection between the library and a specific platform is known
as a Board Support Package (BSP). In recent versions of newlib, BSPs are separated out into
their own library, libgloss, the source for which is in the top level libgloss directory.

For newlib the BSP within libgloss comprises an implementation of the C runtime
initialization, crt0.o, a definition of one global data structure, and implementation of eighteen
system calls for each platform.

Note
libgloss is a relatively new addition to newlib. Some older ports still have the BSP
code within the newlib directory.

5.1. The Platform Directory
A directory is created in the libgloss directory corresponding to the machine directory created
in the newlib/libc/machine directory (see Chapter 4).

This directory will hold the source code for the C runtime initialization (crt0.o) and for the
system calls for each BSP

5.1.1. Ensuring the Platform Directory is Configured
configure.in within the libgloss directory includes a case statement configuring the target
for each target platform. This should be extended to add the new platform directory. The
OpenRISC 1000 32-bit target requires the following change.

case "${target}" in
 i[[3456]]86-*-elf* | i[[3456]]86-*-coff*)
 AC_CONFIG_SUBDIRS([i386])
 ;;
 m32r-*-*)
 AC_CONFIG_SUBDIRS([m32r])
 ;;

 <Other targets not shown>

 spu-*-elf)
 AC_CONFIG_SUBDIRS([spu])
 config_testsuite=false
 config_libnosys=false
 ;;
 or32-*-*)
 AC_CONFIG_SUBDIRS(or32)
 ;;
 iq2000-*-*)
 AC_CONFIG_SUBDIRS([iq2000])
 ;;
esac

20 Copyright © 2010 Embecosm Limited

After making this change the configure file should be regenerated by running autoconf.

5.2. The C Runtime Initialization, crt0.o
The C Runtime system must carry out the following tasks.

• Set up the target platform in a consistent state. For example setting up appropriate
exception vectors.

• Initialize the stack and frame pointers

• Invoke the C constructor initialization and ensure destructors are called on exit.

• Carry out any further platform specific initialization.

• Call the C main function.

• Exit with the return code supplied if the C main function ever terminates.

The code is invariably assembler, although it may call out to C functions, and is best illustrated
by example from the OpenRISC 1000 . This is a BSP designed for use with a fast architectural
simulator. It comes in two variants, one providing just standard output to the console, the
other implementing a simulated UART with both standard input and standard output. The
crt0.0 is common to both BSPs and found in crt0.S.

5.2.1. Exception vector setup
The first requirement is to populate the exception vectors. The OpenRISC 1000 uses memory
from 0x0 to 0x1fff for exception vectors, with vectors placed 0x100 bytes apart. Thus a reset
exception will jump to 0x100, a bus error exception to 0x200 and so on.

In this simple BSP, the vast majority of exceptions are not supported. If they are received,
they print out (using printf) identification of the exception and the address which caused it
to the simulator console, and then exit. We provide a macro for that assembly code, since it
will be reused many times.

#define UNHANDLED_EXCEPTION(str) \
 l.addi r1,r1,-20 /* Standard prologue */ ;\
 l.sw 16(r1),r2 ;\
 l.addi r2,r1,20 ;\
 l.sw 12(r1),r9 ;\
 ;\
 l.movhi r3,hi(.Lfmt) /* printf format string */ ;\
 l.ori r3,r3,lo(.Lfmt) ;\
 l.sw 0(r1),r3 ;\
 l.movhi r4,hi(str) /* Name of exception */ ;\
 l.ori r4,r4,lo(str) ;\
 l.sw 4(r1),r4 ;\
 l.mfspr r5,r0,SPR_EPCR_BASE /* Source of the interrupt */ ;\
 l.jal _printf ;\
 l.sw 8(r1),r5 ;\
 ;\
 l.ori r3,r0,0xffff /* Failure RC */ ;\
 l.jal _exit ;\
 l.nop ;\
 ;\
 l.rfe /* Never executed we hope */

21 Copyright © 2010 Embecosm Limited

The call to printf is expected to use a standard format string (at the label .Lfmt) which
requires two other arguments, an identification string (labeled by the parameter st to the
macro) and the program counter where the exception occurred (loaded from Special Purpose
Register SPR_EPCR_BASE). Return from exception is provided as a formality, although the call
to exit means that we should never execute it.

Note that compiled C functions have their names prepended by underscore on the
OpenRISC 1000 . It is these names that must be used from the assembler code.

The format and identification strings are read only data.

 .section .rodata
.Lfmt: .string "Unhandled %s exception at address %08p\n"
.L200: .string "bus error"
.L300: .string "data page fault"
.L400: .string "instruction page fault"
.L500: .string "timer"
.L600: .string "alignment"
.L700: .string "illegal instruction"
.L800: .string "external interrupt"
.L900: .string "data TLB"
.La00: .string "instruction TLB"
.Lb00: .string "range"
.Lc00: .string "syscall"
.Ld00: .string "floating point"
.Le00: .string "trap"
.Lf00: .string "undefined 0xf00"
.L1000: .string "undefined 0x1000"
.L1100: .string "undefined 0x1100"
.L1200: .string "undefined 0x1200"
.L1300: .string "undefined 0x1300"
.L1400: .string "undefined 0x1400"
.L1500: .string "undefined 0x1500"
.L1600: .string "undefined 0x1600"
.L1700: .string "undefined 0x1700"
.L1800: .string "undefined 0x1800"
.L1900: .string "undefined 0x1900"
.L1a00: .string "undefined 0x1a00"
.L1b00: .string "undefined 0x1b00"
.L1c00: .string "undefined 0x1c00"
.L1d00: .string "undefined 0x1d00"
.L1e00: .string "undefined 0x1e00"
.L1f00: .string "undefined 0x1f00"

The first executable code is for the exception vectors. These must go first in memory, so are
placed in their own section, .vectors. The linker/loader will ensure this this code is placed
first in memory (see Section 7.3).

The reset vector just jumps to the start code. The code is too large to sit within the 0x100 bytes
of an exception vector entry, and is placed in the main text space, in function _start.

22 Copyright © 2010 Embecosm Limited

 .section .vectors,"ax"

 /* 0x100: RESET exception */
 .org 0x100
_reset:
 /* Jump to program initialisation code */
 l.movhi r2,hi(_start)
 l.ori r2,r2,lo(_start)
 l.jr r2
 l.nop

The second vector, at address 0x200 is the bus error exception vector. In normal use, like all
other exceptions it it causes exit and uses the UNHANDLED_EXCEPTION macro.

However during start up, the code tries deliberately to write out of memory, to determine the
end of memory, which will trigger this bus exception. For this a simple exception handler,
which just skips the offending instruction is required.

The solution is to place this code first, followed by the unhandled exception code. Once the
end of memory has been located, the initial code can be overwritten by l.nop opcodes, so the
exception will drop through to the UNHANDLED_EXCEPTOON code.

 .org 0x200
_buserr:
 l.mfspr r24,r0,SPR_EPCR_BASE
 l.addi r24,r24,4 /* Return one instruction on */
 l.mtspr r0,r24,SPR_EPCR_BASE
 l.rfe

_buserr_std:
 UNHANDLED_EXCEPTION (.L200)

No effort is made to save the register (r24) that is used in the handler. The start up code testing
for end of memory must not use this register.

The next exception, data page fault, at location 0x300, like all other exceptions is unhandled.

 .org 0x300
 UNHANDLED_EXCEPTION (.L300)

5.2.2. The _start Function and Stack Initialization
The OpenRISC 1000 ABI uses a falling stack. The linker will place code and static data at
the bottom of memory (starting with the exception vectors). The heap then starts immediately
after this, while the stack grows down from the end of memory.

The linker will supply the address for the start of heap (it is in the global variable end). However
we must find the stack location by trying to write to memory above the heap to determine the
end of memory. Rather than write to every location, the code assumes memory is a multiple
of 64KB, and tries writing to the last word of each 64KB block above end until the value read
back fails.

23 Copyright © 2010 Embecosm Limited

This failure will trigger a bus error exception, which must be handled (see Section 5.2.1). The
address used for the start of the stack (which is also the last word of memory) is stored in a
global location, _stack (which C will recognize as stack).

 .section .data
 .global _stack
_stack: .space 4,0

_start is declared so it looks like a C function. GDB knows that _start is special, and this
will ensure that backtraces do not wind back further than main. It is located in ordinary text
space, so will be placed with other code by the linker/loader.

 .section .text
 .global _start
 .type _start,@function
_start:

The first memory location to test is found by rounding the end location down to a multiple of
64KB, then taking the last word of the 64KB above that. 0xaaaaaaaa is used as the test word
to write to memory and read back.

 l.movhi r30,hi(end)
 l.ori r30,r30,lo(end)
 l.srli r30,r30,16 /* Round down to 64KB boundary */
 l.slli r30,r30,16

 l.addi r28,r0,1 /* Constant 64KB in register */
 l.slli r28,r28,16

 l.add r30,r30,r28
 l.addi r30,r30,-4 /* SP one word inside next 64KB? */

 l.movhi r26,0xaaaa /* Test pattern to store in memory */
 l.ori r26,r26,0xaaaa

Each 64KB block is tested by writing the test value and reading back to see if it matches.

.L3:
 l.sw 0(r30),r26
 l.lwz r24,0(r30)
 l.sfeq r24,r26
 l.bnf .L4
 l.nop

 l.j .L3
 l.add r30,r30,r28 /* Try 64KB higher */

.L4:

24 Copyright © 2010 Embecosm Limited

The previous value is then the location to use for end of stack, and should be stored in the
_stack location.

 l.sub r30,r30,r28 /* Previous value was wanted */
 l.movhi r26,hi(_stack)
 l.ori r26,r26,lo(_stack)
 l.sw 0(r26),r30

The stack pointer (r1) and frame pointer (r2) can be initialized with this value.

 l.add r1,r30,r0
 l.add r2,r30,r0

Having determined the end of memory, there is no need to handle bus errors silently. The
words of code between _buserr and _buserr_std can be replaced by l.nop.

 l.movhi r30,hi(_buserr)
 l.ori r30,r30,lo(_buserr)
 l.movhi r28,hi(_buserr_std)
 l.ori r28,r28,lo(_buserr_std)
 l.movhi r26,0x1500 /* l.nop 0 */
 l.ori r26,r26,0x0000

.L5:
 l.sfeq r28,r30
 l.bf .L6
 l.nop

 l.sw 0(r30),r26 /* Patch the instruction */
 l.j .L5
 l.addi r30,r30,4 /* Next instruction */

.L6:

Note
It is essential that this code is before any data or instruction cache is initialized.
Otherwise more complex steps would be required to enforce data write back and
invalidate any instruction cache entry.

5.2.3. Cache Initialization

The OpenRISC 1000 has optional instruction and data caches. If these are declared (in the
or1ksim-board.h header), then they must be enabled by setting the appropriate bit in the
supervision register.

This is an example of machine specific initialization.

25 Copyright © 2010 Embecosm Limited

 /* Cache initialisation. Enable IC and/or DC */
.if IC_ENABLE || DC_ENABLE
 l.mfspr r10,r0,SPR_SR
.if IC_ENABLE
 l.ori r10,r10,SPR_SR_ICE
.endif
.if DC_ENABLE
 l.ori r10,r10,SPR_SR_DCE
.endif
 l.mtspr r0,r10,SPR_SR
 l.nop /* Flush the pipeline. */
 l.nop
 l.nop
 l.nop
 l.nop
.endif

5.2.4. Clearing BSS
BSS is the area of memory used to hold static variables which must be initialized to zero.
Its start and end are defined by two variables from the linker/loader, __bss_start and end
respectively.

 l.movhi r28,hi(__bss_start)
 l.ori r28,r28,lo(__bss_start)
 l.movhi r30,hi(end)
 l.ori r30,r30,lo(end)

.L1:
 l.sw (0)(r28),r0
 l.sfltu r28,r30
 l.bf .L1
 l.addi r28,r28,4

5.2.5. Constructor and Destructor Handling
GCC may require constructors to be initialized at start up and destructors to be called on exit.
This behavior is captured in the GCC functions __do_global_ctors and __do_global_dtors.
There is some complexity associated with this functionality, since there may be separate lists
for the main code and shared libraries that are dynamically loaded.

It is usual to wrap this functionality in two functions, init and fini, which are placed in their
own sections, .init and .fini. The .init section is loaded before all other text sections and
the .fini section after all other text sections.

The start up code should call init to handle any constructors.

 l.jal init
 l.nop

26 Copyright © 2010 Embecosm Limited

The fini function is passed to the library function _atexit to ensure it is called on a normal
exit.

 l.movhi r3,hi(fini)
 l.jal _atexit
 l.ori r3,r3,lo(fini) /* Delay slot */

5.2.6. C Initialization Functions
Now that the C infrastructure is set up, it is appropriate to call any C functions that are used
during initialization. In the OpenRISC 1000 case this is a function to initialize a UART. Only
one version of the library actually has a UART. However it is easiest to substitute a dummy
version of the initialization function in the version of the library without a UART, rather than
making this function conditional.

 l.jal __uart_init
 l.nop

5.2.7. Invoking the main program
The final stage is to call the main program. In this simple implementation there is no
mechanism to pass arguments or environments to main, so the arguments argc, argv and env
(in r3, r4 and r5) are set to 0, NULL and NULL respectively.

 l.or r3,r0,r0
 l.or r4,r0,r0
 l.jal _main
 l.or r5,r0,r0 /* Delay slot */

If the main program returns, its result (held in r11 on the OpenRISC 1000) will be a return
code from the program, which we pass to the exit.

 l.jal _exit
 l.addi r3,r11,0 /* Delay slot */

exit should not return, but just in case, we can put the processor in a tight loop at this stage,
in order to ensure consistent behavior.

.L2:
 l.j .L2
 l.nop

5.3. Standard System Call Implementations
The simplest way to provide a board support package is to implement the 18 system calls in
non-reentrant fashion. For many bare metal implementations this is sufficient.

The simplest possible BSP supports just output to standard output and non input. We give
the minimal implementation for such a system.

Where appropriate, we also show the OpenRISC 1000 implementation as a practical example.

27 Copyright © 2010 Embecosm Limited

This section duplicates much of the information found in the newlib libc documentation [1].
It is included here for completeness.

5.3.1. Error Handling
Many functions set an error code on failure in the global variable, errno.

There is a slight complication with newlib, because errno is not implemented as a variable,
but a macro (this make life easier for reentrant functions).

The solution for standard system call implementations, which must return an error code is
to undefine the macro and use the external variable instead. At the head of such functions
use the following.

#include <errno.h>
#undef errno
extern int errno;

Note
errno is a global variable, so changing it will immediately make a function non-
reentrant.

5.3.2. The Global Environment, environ
The global variable, environ must point to a null terminated list of environment variable name-
value pairs.

For a minimal implementation it is sufficient to use an empty list as follows.

char *__env[1] = { 0 };
char **environ = __env;

5.3.3. Exit a program, _exit
Exit a program without any cleanup.

The OpenRISC 1000 s implementation makes use of the l.nop opcode. This opcode takes a 16-
bit immediate operand. Functionally the operand has no effect on the processor itself. However
a simulator can inspect the operand to provide additional behavior external to the machine.

When executing on Or1ksim, l.nop 1 causes a tidy exit of the simulator, using the value in
r3 as the return code.

void
_exit (int rc)
{
 register int t1 asm ("r3") = rc;

 asm volatile ("\tl.nop\t%0" : : "K" (NOP_EXIT), "r" (t1));

 while (1)
 {
 }
} /* _exit () */

28 Copyright © 2010 Embecosm Limited

Note the use of volatile. Otherwise there is a strong possibility of an optimizing compiler
recognizing that this opcode does nothing (we are relying on a simulation side-effect) and
removing it.

!
Caution
The name of this function is already namespace clean. If a namespace clean
implementation of the system calls has been specified in configure.host (see
Section 3.3.1), then this function is still named _exit, not __exit.

5.3.4. Closing a file, close
For a namespace clean function, implement _close, otherwise implement close. The detailed
implementation will depend on the file handling functionality available.

In the minimal implementation, this function always fails, since there is only standard output,
which is not a valid file to close. This implementation is sufficient for the OpenRISC 1000 .

#include <errno.h>

#undef errno
extern int errno;

int
_close (int file)
{
 errno = EBADF;

 return -1; /* Always fails */

} /* _close () */

5.3.5. Transfer Control to a New Process, execve
For a namespace clean function, implement _execve, otherwise implement execve. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

A minimal implementation, such as that for bare metal coding, only offers a single user thread
of control. It is thus impossible to start a new process, so this function always fails.

#include <errno.h>

#undef errno;
extern int errno;

int
_execve (char *name,
 char **argv,
 char **env)
{
 errno = ENOMEM;
 return -1; /* Always fails */

} /* _execve () */

29 Copyright © 2010 Embecosm Limited

The choice of errno is somewhat arbitrary. However no value for "no processes available" is
provided, and ENOMEM is the closest in meaning to this.

5.3.6. Create a new process, fork
For a namespace clean function, implement _fork, otherwise implement fork. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

A minimal implementation, such as that for bare metal coding, only offers a single user thread
of control. It is thus impossible to start a new process, so this function always fails.

#include <errno.h>

#undef errno
extern int errno;

int
_fork ()
{
 errno = EAGAIN;
 return -1; /* Always fails */

} /* _fork () */

The choice of errno is again somewhat arbitrary. However no value for "no processes available"
is provided, and EAGAIN is the closest in meaning to this.

5.3.7. Provide the Status of an Open File, fstat
For a namespace clean function, implement _fstat, otherwise implement fstat. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation should assume that all files are character special devices and
populate the status data structure accordingly.

#include <sys/stat.h>

int
_fstat (int file,
 struct stat *st)
{
 st->st_mode = S_IFCHR;
 return 0;

} /* _fstat () */

The OpenRISC 1000 implementation requires two versions of this, one for the BSP using the
console for output and one for the BSP using a UART and supporting both standard input
and standard output.

Without a UART, the implementation still checks that the file descriptor is one of the two that
are supported, and otherwise returns an error.

30 Copyright © 2010 Embecosm Limited

#include <errno.h>
#include <sys/stat.h>
#include <unistd.h>

#undef errno
extern int errno;

int
_fstat (int file,
 struct stat *st)
{
 if ((STDOUT_FILENO == file) || (STDERR_FILENO == file))
 {
 st->st_mode = S_IFCHR;
 return 0;
 }
 else
 {
 errno = EBADF;
 return -1;
 }
} /* _fstat () */

The implementation when a UART is available is almost identical, except that STDIN_FILENO
is also an acceptable file for which status can be provided.

5.3.8. Get the Current Process ID, getpid

For a namespace clean function, implement _getpid, otherwise implement getpid. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

For a minimal implementation, with no processes, this can just return a constant. It is perhaps
safer to return one rather than zero, to avoid issue with software that believes process zero
is something special.

int
_getpid ()
{
 return 1; /* Success */

} /* _getpid () */

5.3.9. Determine the Nature of a Stream, isatty

For a namespace clean function, implement _isatty, otherwise implement isatty. The
detailed implementation will depend on the file handling functionality available.

This specifically checks whether a stream is a terminal. The minimal implementation only has
the single output stream, which is to the console, so always returns 1.

31 Copyright © 2010 Embecosm Limited

int
_isatty (int file)
{
 return 1;

} /* _isatty () */

!
Caution
Contrary to the standard libc documentation, this applies to any stream, not just
output streams.

The OpenRISC 1000 version gives a little more detail, setting errno if the stream is not standard
output, standard error or (for the UART version of the BSP) standard input.

#include <errno.h>
#include <unistd.h>

#undef ERRNO
extern int errno;

int
_isatty (int file)
{
 if ((file == STDOUT_FILENO) || (file == STDERR_FILENO))
 {
 return 1;
 }
 else
 {
 errno = EBADF;
 return -1;
 }
} /* _isatty () */

The UART version is almost identical, but also succeeds for standard input.

5.3.10. Send a Signal, kill

For a namespace clean function, implement _kill, otherwise implement kill. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

A minimal implementation has no concept of either signals, nor of processes to receive those
signals. So this function should always fail with an appropriate value in errno.

32 Copyright © 2010 Embecosm Limited

#include <errno.h>

#undef errno
extern int errno;

int
_kill (int pid,
 int sig)
{
 errno = EINVAL;
 return -1; /* Always fails */

} /* _kill () */

5.3.11. Rename an existing file, link

For a namespace clean function, implement _link, otherwise implement link. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation has no file system, so this function must always fail, with an
appropriate value set in errno.

#include <errno.h>

#undef errno
extern int errno;

int
_link (char *old,
 char *new)
{
 errno = EMLINK;
 return -1; /* Always fails */

} /* _link () */

5.3.12. Set Position in a File, lseek

For a namespace clean function, implement _lseek, otherwise implement lseek. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation has no file system, so this function can return 0, indicating that
the only stream (standard output) is positioned at the start of file.

33 Copyright © 2010 Embecosm Limited

#include <errno.h>

#undef errno
extern int errno;

int
_lseek (int file,
 int offset,
 int whence)
{
 return 0;

} /* _lseek () */

The OpenRISC 1000 version is a little more detailed, returning zero only if the stream is
standard output, standard error or (for the UART version of the BSP) standard input. Otherwise
-1 is returned and an appropriate error code set in errno.

#include <errno.h>
#include <unistd.h>

#undef errno
extern int errno;

int
_lseek (int file,
 int offset,
 int whence)
{
 if ((STDOUT_FILENO == file) || (STDERR_FILENO == file))
 {
 return 0;
 }
 else
 {
 errno = EBADF;
 return (long) -1;
 }
} /* _lseek () */

The UART version is almost identical, but also succeeds for standard input.

5.3.13. Open a file, open

For a namespace clean function, implement _open, otherwise implement open. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation has no file system, so this function must always fail, with an
appropriate error code set in errno.

34 Copyright © 2010 Embecosm Limited

#include <errno.h>

#undef errno
extern int errno;

int
_open (const char *name,
 int flags,
 int mode)
{
 errno = ENOSYS;
 return -1; /* Always fails */

} /* _open () */

5.3.14. Read from a File, read

For a namespace clean function, implement _read, otherwise implement read. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation has no file system. Rather than failing, this function returns 0,
indicating end-of-file.

#include <errno.h>

#undef errno
extern int errno;

int
_read (int file,
 char *ptr,
 int len)
{
 return 0; /* EOF */

} /* _read () */

The OpenRISC 1000 BSP without a UART is very similar to the minimal implementation, but
checks that the stream is standard input before returning 0. For all other streams it returns
an error.

35 Copyright © 2010 Embecosm Limited

#include <errno.h>
#include <unistd.h>

#undef errno
extern int errno;

int
_read (int file,
 char *ptr,
 int len)
{
 if (STDIN_FILENO == file)
 {
 return 0; /* EOF */
 }
 else
 {
 errno = EBADF;
 return -1;
 }
} /* _read () */

The OpenRISC 1000 BSP with a UART is more complex. In this case, if the stream is standard
input, a character is read (and optionally echoed) from the UART.

36 Copyright © 2010 Embecosm Limited

#include <errno.h>
#include <unistd.h>

#undef errno
extern int errno;

int
_read (int file,
 char *buf,
 int len)
{
 if (STDIN_FILENO == file)
 {
 int i;

 for (i = 0; i < len; i++)
 {
 buf[i] = _uart_getc ();
#ifdef UART_AUTO_ECHO
 _uart_putc (buf[i]);
#endif
 /* Return partial buffer if we get EOL */
 if ('\n' == buf[i])
 {
 return i;
 }
 }

 return i; /* Filled the buffer */
 }
 else
 {
 errno = EBADF;
 return -1;
 }
} /* _read () */

!
Caution
The Or1ksim UART implementation only returns data when carriage return is
hit, rather than as each character becomes available, which can lead to some
unexpected behavior.

5.3.15. Allocate more Heap, sbrk

For a namespace clean function, implement _sbrk, otherwise implement sbrk. This is one
function for which there is no default minimal implementation. It is important that it is
implemented wherever possible, since malloc depends on it, and in turn many other functions
depend on malloc. In this application note, the OpenRISC 1000 implementation is used as
an example.

As noted earlier (Section 5.2.2), the heap on the OpenRISC 1000 grows up from the end of
loaded program space, and the stack grows down from the top of memory. The linker defines

37 Copyright © 2010 Embecosm Limited

the symbol _end, which will be the start of the heap, whilst the C runtime initialization places
the address of the last work in memory in the global variable _stack.

!
Caution
_end is a symbol defined by the linker, not a variable, so it is its address that must
be used, not its value.

Within a C program these two variables are referred to without their leading underscore—the
C compiler prepends all variable names with underscore.

#include <errno.h>

#undef errno
extern int errno;

#define STACK_BUFFER 65536 /* Reserved stack space in bytes. */

void *
_sbrk (int nbytes)
{
 /* Symbol defined by linker map */
 extern int end; /* start of free memory (as symbol) */

 /* Value set by crt0.S */
 extern void *stack; /* end of free memory */

 /* The statically held previous end of the heap, with its initialization. */
 static void *heap_ptr = (void *)&end; /* Previous end */

 if ((stack - (heap_ptr + nbytes)) > STACK_BUFFER)
 {
 void *base = heap_ptr;
 heap_ptr += nbytes;

 return base;
 }
 else
 {
 errno = ENOMEM;
 return (void *) -1;
 }
} /* _sbrk () */

The program always tries to keep a minimum of 65,536 (216) bytes spare for the stack.

Note
This implementation defines _sbrk as returning type void *. The standard newlib
documentation uses return type caddr_t, which is defined in unistd.h. The author
believes that void * is now the recommended return type for this function.

!
Important
sbrk has to return the previous end of the heap, whose value is held in the static
variable, heap_ptr.

38 Copyright © 2010 Embecosm Limited

The problem is that this now makes the function non-reentrant. If the function
were interrupted after the assignment to base, but before the following assignment
to heap_ptr, and the interrupt routine itself also called sbrk, then the heap would
become corrupted.

For simple systems, it would be sufficient to avoid using this function in interrupt
service routines. However the problem then knowing which functions might call
malloc and hence sbrk, so effectively all library functions must be avoided.

The problem cannot even be completely avoided by using reentrant functions (see
Section 5.4), since just providing a per thread data structure does not help. The
end of heap is a single global value. The only full solution is to surround the update
of the global variable by a semaphore, and failing the allocation if the region is
blocked (we cannot wait, or deadlock would result).

5.3.16. Status of a File (by Name), stat

For a namespace clean function, implement _stat, otherwise implement stat. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation should assume that all files are character special devices and
populate the status data structure accordingly.

#include <sys/stat.h>

int
_stat (char *file,
 struct stat *st)
{
 st->st_mode = S_IFCHR;
 return 0;

} /* _stat () */

The OpenRISC 1000 implementation takes a stricter view of this. Since no named files are
supported, this function always fails.

#include <errno.h>
#include <sys/stat.h>

#undef errno
extern int errno;

int
_stat (char *file,
 struct stat *st)
{
 errno = EACCES;
 return -1;

} /* _stat () */

39 Copyright © 2010 Embecosm Limited

5.3.17. Provide Process Timing Information, times

For a namespace clean function, implement _times, otherwise implement times. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

A minimal implementation need not offer any timing information, so should always fail with
an appropriate value in errno.

#include <errno.h>
#include <sys/times.h>

#undef errno
extern int errno;

int
_times (struct tms *buf)
{
 errno = EACCES;
 return -1;

} /* _times () */

5.3.18. Remove a File's Directory Entry, unlink

For a namespace clean function, implement _unlink, otherwise implement unlink. The
detailed implementation will depend on the file handling functionality available.

A minimal implementation has no file system, so this function should always fail, setting an
appropriate value in errno.

#include <errno.h>

#undef errno
extern int errno;

int
_unlink (char *name)
{
 errno = ENOENT;
 return -1; /* Always fails */

} /* _unlink () */

5.3.19. Wait for a Child Process, wait

For a namespace clean function, implement _wait, otherwise implement wait. The
implementation of this functionality will be tightly bound to any operating infrastructure for
handling multiple processes.

A minimal implementation has only one process, so can wait for no other process and should
always fail with an appropriate value in errno.

40 Copyright © 2010 Embecosm Limited

#include <errno.h>

#undef errno
extern int errno;

int
_wait (int *status)
{
 errno = ECHILD;
 return -1; /* Always fails */

} /* _wait () */

5.3.20. Write to a File, write

For a namespace clean function, implement _write, otherwise implement write. The detailed
implementation will depend on the file handling functionality available.

A minimal implementation only supports writing to standard output. The core of the
implementation is:

int
_write (int file,
 char *buf,
 int nbytes)
{
 int i;

 /* Output character at at time */
 for (i = 0; i < nbytes; i++)
 {
 outbyte (buf[i]);
 }

 return nbytes;

} /* _write () */

The function outbyte must use the functionality of the target platform to write a single
character to standard output. For example copying the character to a serial line for display.
There can be no standard implementation of this function.

For the OpenRISC 1000 two versions are needed one for the BSP without a UART one for the
BSP with a UART.

Without a UART the implementation uses the l.nop opcode with a parameter, as with the
implementation of _exit (Section 5.3.3). In this case the parameter 4 will cause the simulator
to print out the value in register r3 as an ASCII character.

41 Copyright © 2010 Embecosm Limited

#include "or1ksim-board.h"

static void
outbyte (char c)
{
 register char t1 asm ("r3") = c;

 asm volatile ("\tl.nop\t%0" : : "K" (NOP_PUTC), "r" (t1));

} /* outbyte () */

We also use a stricter implementation of the main write function, only permitting a write if
the standard output or standard error stream is specified.

#include <errno.h>
#include <unistd.h>

#undef errno
extern int errno;

int
_write (int file,
 char *buf,
 int nbytes)
{
 int i;

 /* We only handle stdout and stderr */
 if ((file != STDOUT_FILENO) && (file != STDERR_FILENO))
 {
 errno = EBADF;
 return -1;
 }

 /* Output character at at time */
 for (i = 0; i < nbytes; i++)
 {
 outbyte (buf[i]);
 }

 return nbytes;

} /* _write () */

For the BSP supporting a UART, all that is needed is to change the outbyte function to use
the routines to drive the UART

42 Copyright © 2010 Embecosm Limited

static void
outbyte (char c)
{
 _uart_putc (c);

} /* outbyte () */

The UART support routines are provided separately, driving the interface via its memory
mapped registers.

5.4. Reentrant System Call Implementations
Reentrancy is achieved by providing a global reentrancy structure, struct _reent for each
thread of control, which holds thread specific versions of global data structures, such as errno.

For a fully reentrant system, the BSP should implement the reentrant versions of the system
calls, having defined syscall_dir=syscalls and added -DREENTRANT_SYSCALLS_PROVIDED" to
newlib_cflags in configure.host (see Section 3.3.1).

16 of the system calls have reentrant versions, which take the suffix _r and are passed an
additional first argument, which is a pointer to the reentrancy structure, struct reent for the
thread of control. Thus _close is replaced by _close_r. The reentrant functions are _close_r,
_execve_r, _fcntl_r, _fork_r, _fstat_r, _getpid_r, _link_r, _lseek_r, _open_r, _read_r,
_sbrk_r, _stat_r, _times_r, _unlink_r, _wait_r and _write_r.

Two system calls do not need reentrant versions, _kill and _exit, which are provided as with
non-reentrant versions.

For many of the reentrant functions, the behavior is almost identical to that of the non-
reentrant versions, beyond ensuring the thread specific version of errno in the reentrancy
structure is used. Template versions can be found in the libc/reent directory under the
newlib directory.

There are two ways in which the end user can be supported with these reentrancy functions.
In the first it is up to the user to manage per thread reentrancy data structures and to call
the reentrant functions explicitly.

However the more powerful solution is for the system to manage the reentrancy structure
itself. The end user can call the standard functions, and they will be mapped to reentrant
calls, passing in a reentrancy structure for the thread.

For this approach to be used, -D__DYNAMIC_REENT__ must be added to newlib_cflags and the
BSP must define the function __getreent, to return the reentrancy structure for the current
thread.

5.5. BSP Configuration and Make file;
There is little documentation for the configuration and make files for the BSPs. The general
guideline is to copy the baseline versions of these files in the default platform library, libnosys,
which is based on the minimal implementations described in Section 5.3.

This application note uses the configuration and make files for the OpenRISC 1000 to illustrate
the key principles.

Building the BSP only uses autoconf and autoheader, but not automake. So there is a
configure.in (or configure.ac) and Makefile.in, but no Makefile.am. After making any

43 Copyright © 2010 Embecosm Limited

changes it is important to run autoconf and autoheader to regenerate the configure script and
header files. It will also need a aclocal.m4 to give the local macro definitions, which can be
regenerated from the main libgloss acinclude.m4 using aclocal. The command needed are:

aclocal -I ..
autoheader
autoconf

aclocal need only be run the first time the directory is created. autoheader is only needed if
the BSP needs configuration parameters from the system in a local config.h file.

5.5.1. configure.in for the BSP

The configure.in for the OpenRISC 1000 is closely based on the version in libnosys.

The initial declarations just need modifying to change the name of the package.

AC_PREREQ(2.59)
AC_INIT(libor32.a,0.2.0)
AC_CONFIG_HEADER(config.h)

There is then code to print a warning if the user has asked for shared library support (not
available) and to locate the auxiliary tools for autoconf.

The script makes use of AC_CANONICAL_SYSTEM to determine the system type and set
appropriate variables. This is now obsolete, and is replaced by AC_CANONICAL_TARGET in the
OpenRISC 1000 version. The installed program names may be changed (for example by --
prefix), so we need AC_ARG_PROGRAM and we locate the install program.

AC_CANONICAL_TARGET

AC_ARG_PROGRAM
AC_PROG_INSTALL

The assumption is made that we are using GNU ld, so we define HAVE_GNU_LD. The script in
libnosys does this in an obsolete way, which is fixed in the OpenRISC 1000 script.

AC_DEFINE(HAVE_GNU_LD, 1, [Using GNU ld])

The standard script tests the canonical target name to determine if this is an ELF target. For
OpenRISC 1000 this is always the case, so the test can be replaced by a simple declaration.

AC_DEFINE(HAVE_ELF, 1, [Using ELF format])

The script in libnosys then tests for the presence of various features. Most of those are not
relevant to OpenRISC 1000 so can be left out. However we do need to determine what the

44 Copyright © 2010 Embecosm Limited

symbol prefix is. We could just define this as being '_', but instead we let the script work it
out, using the standard script's code.

AC_CACHE_CHECK([for symbol prefix], libc_symbol_prefix, [dnl
cat > conftest.c <<\EOF
foo () { }
EOF

libc_symbol_prefix=none
if AC_TRY_COMMAND([${CC-cc} -S conftest.c -o - | fgrep "\$foo" > /dev/null]);
then
 libc_symbol_prefix='$'
else
 if AC_TRY_COMMAND([${CC-cc} -S conftest.c -o - | fgrep "_foo" > /dev/null]);
 then
 libc_symbol_prefix=_
 fi
fi
rm -f conftest*])
if test $libc_symbol_prefix != none; then
 AC_DEFINE_UNQUOTED(__SYMBOL_PREFIX, "$libc_symbol_prefix", [symbol prefix])
else
 AC_DEFINE(__SYMBOL_PREFIX, "", [symbol prefix])
fi

The code to define the various host tools used is standard. However it will expect to find an
aclocal.m4 file in the directory. This can be regenerated, or simply copied from the libnosys
directory. The variable host_makefile_frag refers to standard make script defining how
compilation is carried out for the various source files.

Finally the new Makefile can be generated in a suitably initialized environment.

AC_CONFIG_FILES(Makefile,
 ac_file=Makefile . ${libgloss_topdir}/config-ml.in,
 srcdir=${srcdir}
 target=${target}
 with_multisubdir=${with_multisubdir}
 ac_configure_args="${ac_configure_args} --enable-multilib"
 CONFIG_SHELL=${CONFIG_SHELL-/bin/sh}
 libgloss_topdir=${libgloss_topdir}
)
AC_OUTPUT

5.5.2. Makefile.in for the BSP
The first part of Makefile.in is just transferring values from configure and is used unchanged.
The first potential variation is in multilib handling. If your GCC implements multilibs, then
that may need to be mirrored in the BSP implementation. If not, then there is no need to set
MULTIDO and MULTICLEAN to true and these lines can be removed.

The Makefile.in in libnosys includes an option to use new versions of the loader and
assembler. However for most implementations, the plain tool is all that is needed, so simple
transfer of the configured values is sufficient.

45 Copyright © 2010 Embecosm Limited

CC = @CC@
AS = @AS@
AR = @AR@
LD = @LD@
RANLIB = @RANLIB@

The main tools will already have been transformed to take account of any prefix (for example
using or32-elf-gcc rather than gcc). However this has not been done for objdump and
objcopy, so these are transformed here.
This is the point at which we define the BSPs to be built. Any custom flags for the compilation
can be added to CFLAGS here.

CFLAGS = -g

We specify the C start up file(s) and BSP(s) to be built.

CRT0 = crt0.o
BSP = libor32.a
BSP_UART = libor32uart.a

OUTPUTS = $(CRT0) $(BSP) $(BSP_UART)

!
Important
It is important to define OUTPUTS. This is the complete set of programs and libraries
being built. It is used in the clean and install targets.

For each BSP we specify the object files from which it is built. For the plain OpenRISC 1000
 BSP we have:

OBJS = _exit.o \
 close.o \
 environ.o \
 execve.o \
 fork.o \
 fstat.o \
 getpid.o \
 isatty.o \
 kill.o \
 link.o \
 lseek.o \
 open.o \
 read.o \
 sbrk.o \
 stat.o \
 times.o \
 uart-dummy.o \
 unlink.o \
 wait.o \
 write.o

46 Copyright © 2010 Embecosm Limited

For the BSP with UART support we use many of the same files, but also have some different
files.

UART_OBJS = _exit.o \
 close.o \
 environ.o \
 execve.o \
 fork.o \
 fstat-uart.o \
 getpid.o \
 isatty-uart.o \
 kill.o \
 link.o \
 lseek-uart.o \
 open.o \
 read-uart.o \
 sbrk.o \
 stat.o \
 times.o \
 uart.o \
 unlink.o \
 wait.o \
 write-uart.o

At this point, the version of Makefile.in in libnosys specifies explicitly the rules for compiling
object files from C and assembler source. However it is better to incorporate a standard set of
rules, using the host_makefile_frag reference from the configuration.

@host_makefile_frag@

This is the point at which to specify the first make rule to create the C runtime start up files
and BSPs.

all: ${CRT0} ${BSP} ${BSP_UART}

The object files (including crt0.o) will be built automatically, but we need rules to build the
libraries from them.

$(BSP): $(OBJS)
 ${AR} ${ARFLAGS} $@ $(OBJS)
 ${RANLIB} $@

$(BSP_UART): $(UART_OBJS)
 ${AR} ${ARFLAGS} $@ $(UART_OBJS)
 ${RANLIB} $@

The remainder of Makefile.in is standard. It provides rules to clean the build directory, to
install the generated BSP(s) and C start up file(s), and rules to ensure configure and Makefile
are regenerated when necessary.

47 Copyright © 2010 Embecosm Limited

There also hooks to create, clean and install any documentation (as info files), which are
empty by default.

Very often these rules are sufficient, so long as all the entities created have been listed in
OUTPUTS. They should be modified if necessary.

5.6. The Default BSP, libnosys
Newlib also builds a default BSP libnosys.a. This can be used with the -lnosys flag, and
provides a convenient way of testing that code will link correctly in the absence of a full BSP

The code can be found in the libnosys sub-directory of the main libgloss directory.

For completeness, the configuration template file, configure.in, in this directory should be
updated for any new target that is defining namespace clean versions of the functions. Each
such system is selected using a case statement. The new entry for the OpenRISC 1000 is
as follows.

 or32-*-*)
 ;;

Having updated the configuration template, run autoconf to regenerate the configure script
file.

48 Copyright © 2010 Embecosm Limited

Chapter 6. Configuring, Building and Installing
Newlib and Libgloss
Having made all the changes it is not time to configure, build and install the system. The
examples in this chapter for the OpenRISC 1000 assume a unified source tree in srcw and a
build directory, bld-or32, with the installation directory prefix /opt/or32-elf-new.

6.1. Configuring Newlib and Libgloss
Newlib is configured as follows.

cd bld-or32
../srcw/configure --target=or32-elf --with-newlib --prefix=/opt/or32-elf-new

Note
Other options may be needed on the command line if other GNU tools are being
built. However these are the options relevant to newlib

6.2. Building Newlib and Libgloss
The system is built using make from within the bld-or32 directory.

make all-target-newlib
make all-target-libgloss

6.3. Testing Newlib and Libgloss
Testing newlib and libgloss requires further configuration. The details are discussed later in
this application note (see Chapter 8). For now this step can be skipped.

6.4. Installing Newlib and Libgloss
The system is installed using make from within the bld-or32 directory.

make install-target-newlib
make install-target-libgloss

49 Copyright © 2010 Embecosm Limited

Chapter 7. Modifying the GNU Tool Chain
7.1. Putting Newlib in a Custom Location
Normally newlib will be installed in a standard place with the rest of the tool chain. Its headers
will go in the include directory within the target specific installation directory. The C runtime
start up file, the newlib libraries themselves and BSP libraries will go in the lib directory
within the target specific installation directory.

This arrangement ensures that GCC will pick up the headers and libraries automatically and
in the correct sequence.

However if newlib is not the only C library, then this may be inconvenient. For example the
OpenRISC 1000 usually uses uClibc, and only uses newlib when regression testing the GNU
tool chain.

The solution is to move the newlib headers and libraries to a custom location and modify GCC
to search there when newlib is being used (see Section 7.2).

This is achieved with a simple script at the end of build and install. For example with the
OpenRISC 1000 the following command will suffice, where the prefix used for the entire tool
chain build is in ${install_dir}.

mkdir -p ${install_dir}/or32-elf/newlib
rm -rf ${install_dir}/or32-elf/newlib-include
mv ${install_dir}/or32-elf/include ${install_dir}/or32-elf/newlib-include
mv ${install_dir}/or32-elf/lib/*.a ${install_dir}/or32-elf/newlib
mv ${install_dir}/or32-elf/lib/crt0.o ${install_dir}/or32-elf/newlib

7.2. Changes to GCC
In general GCC will work with newlib with no change. All that is needed is to include the BSP
library on the command line.

However it is convenient to modify GCC so that it picks up the BSP automatically. This is
particularly useful when newlib has been installed in a custom location (see Section 7.1).

This is achieved by adding machine specific options to GCC, and modifying the Spec definitions
to pick up the newlib libraries when the relevant option is in effect.

All the relevant files are found in the gcc/config/target directory of GCC. For the 32-bit
OpenRISC 1000 this is gcc/config/or32.

7.2.1. Adding Machine Specific Options for Newlib
Machine specific options are described in the target.opt file. By convention machine specific
options begin with 'm'.

For the OpenRISC 1000 we define two options, -mor32-newlib and -mor32-newlib-uart for
the plain and UART enabled versions of the BSP respectively.

For each option we provide its name on one line, any parameters on subsequent lines and a
final line of description. In this case the only parameter is to say that the parameter can only
appear in its positive form (i.e. --mno-or32-newlib is not permitted).

50 Copyright © 2010 Embecosm Limited

mor32-newlib
Target RejectNegative
Link with the OR32 newlib library

mor32-newlib-uart
Target RejectNegative
Link with the OR32 newlib UART library

These parameters can then be used elsewhere.

7.2.2. Updating Spec Definitions
GCC calls a number of subsidiary programs (the compiler itself, the assembler, the linker etc).
The arguments to these are built up from the parametrized strings, known as Spec strings.

This application note cannot describe the huge range of possible parameters. However we will
use one example to show what is possible. The changes are all made to the definitions of the
strings in target.h. In the case of the OpenRISC 1000 this is or32.h.

We need to make four changes.

1. We need to tell the C preprocessor to look for headers in the relocated newlib library
directory.

2. We need to tell the linker to pick up the newlib C runtime start up file.

3. We need to tell the linker where to find the newlib libraries.

4. We need to tell the linker to include the BSP library in the right place.

The Target Specific Installation Directory
All of these changes will require knowing the location of the target specific installation
directory. Unfortunately there is no Spec parameter giving this. However we can construct
it from two definitions available when compiling GCC. STANDARD_EXEC_PREFIX is the directory
where the GCC executables will be found. Two directories up from that will be the main prefix
directory. The target machine is specified in DEFAULT_TARGET_MACHINE. So concatenating the
three strings yields the target specific directory.

STANDARD_EXEC_PREFIX "/../../" DEFAULT_TARGET_MACHINE

The newlib headers are in the subdirectory newlib-include and the C runtime start up and
libraries in newlib.

We define a new string, TARGET_PREFIX based on the concatenation.

#define CONC_DIR(dir1, dir2) dir1 "/../../" dir2
#define TARGET_PREFIX CONC_DIR (STANDARD_EXEC_PREFIX, DEFAULT_TARGET_MACHINE)

Defined constants cannot be used directly in Spec strings, but we can make them available
by defining the macro EXTRA_SPECS.

#define EXTRA_SPECS \
 { "target_prefix", TARGET_PREFIX }

51 Copyright © 2010 Embecosm Limited

The Spec string target_prefix is now available to be used in other Spec strings.

Specifying the header directory.
Additional arguments to the C preprocessor are defined in CPP_SPEC. The newlib header
directory should we searched after any user specified header directories (from -I arguments)
and after the GCC system headers. So it is specified using the -idirafter option.

#undef CPP_SPEC
#define CPP_SPEC "%{mor32-newlib*:-idirafter %(target_prefix)/newlib-include}"

This specifies that any option beginning -mor32-newlib should be replaced by the string -
idirafter followed by the newlib-incldue subdirectory of the target_prefix directory.

So so for example, if we build the OpenRISC 1000 GCC with --prefix=/opt/or32-
elf-new, we would have STANDARD_EXEC_PREFIX set to /opt/or32-elf-new/lib/gcc and
DEFAULT_TARGET_MACHINE set to or32-elf. The Spec variable target_prefix would therefore
be /opt/or32-elf-new/lib/gcc/../../or32-elf and thus the C preprocessor would have the
following added to its option list.

-idirafter /opt/or32-elf-new/lib/gcc/../../or32-elf/newlib-include"

This substitution only occurs when -mor32-newlib or -mor32-newlib-uart is specified, which
is exactly the behavior desired.

Note
If newlib is not relocated as described in Section 7.1, then the headers will be in
a standard location, which GCC will search anyway, so there is no need to define
CPP_SPEC.

Specifying the C Start up File
crt0.o should be the first object file or library specified to the linker. This is covered by
STARTFILE_SPEC.

This string already has a partial definition, to look for crt0.o in a standard place, and to
include the crtinit.o file from a standard place.

#undef STARTFILE_SPEC
#define STARTFILE_SPEC "%{!shared:crt0%s crtinit.o%s}"

So long as -shared is not specified as an option, this looks for crt0.o and crtinit.o in
standard directories and substitutes them on the command line (the suffix %s indicates that
the preceding file should be searched for in standard directories, and its name expanded to
include the directory name).

This needs changing to indicate that if -mor32-newlib or -mor32-newlib-uart is specified, then
crt0.o should be taken from the newlib directory.

#define STARTFILE_SPEC \
 "%{!shared:%{mor32-newlib*:%(target_prefix)/newlib/crt0.o} \
 %{!mor32-newlib*:crt0.o%s} crtinit.o%s}"

52 Copyright © 2010 Embecosm Limited

Note that we must also include the case that when neither of the newlib options is specified,
then crt0.o will be searched for in standard directories.

Note
If newlib is not relocated as described in Section 7.1, then crt0.o will be in a
standard location, which GCC will search anyway, so there is no need to modify
STARTFILE_SPEC.

Specifying the Newlib library location
We need to tell the linker where to look for newlib libraries. This is achieved in a similar
manner to the search for the headers, but using the -L option and LINK_SPEC.

#undef LINK_SPEC
#define LINK_SPEC "%{mor32-newlib*:-L%(target_prefix)/newlib}"

Note
If newlib is not relocated as described in Section 7.1, then the newlib libraries will
be in a standard location searched by GCC, so there is no need to specify LINK_SPEC.

Adding a BSP to the link line.
The libraries searched by GCC are by default specified to be -lgcc -lc -lgcc, with variants
if profiling is being used. When a BSP is used, it must be searched after libc, but that can
leave references unresolved, so libc must be searched again afterward.

The sequence of libraries to be searched between the two searches of libgcc is given in
LIB_SPEC. It already has a definition.

#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}

This specifies a variant library when profiling is in place. newlib does not offer profiling
support, but it does have a debugging version of the library (libg).

#undef LIB_SPEC
#define LIB_SPEC "%{!mor32-newlib*:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}} \
 %{mor32-newlib:%{!g:-lc -lor32 -lc} \
 %{g:-lg -lor32 -lg}} \
 %{mor32-newlib-uart:%{!g:-lc -lor32uart -lc} \
 %{g:-lg -lor32uart -lg}}"

This ensures that the correct BSP library will be used, according the the option selected, and
that if -g is specified on the command line, the debugging version of the C library (libg) will
be used instead.

Even if the newlib is not relocated as described in Section 7.1, then this Spec change is
required in order to ensure the correct libraries are picked up.

7.3. Changes to the GNU Linker
In general changes to the linker are not needed. Instead the BSP should make use of
information provided by the standard linker. For example in the definition of sbrk (see

53 Copyright © 2010 Embecosm Limited

Section 5.3.15) the code uses the _end symbol defined by the linker at the end of the loaded
image to be the start of the heap.

54 Copyright © 2010 Embecosm Limited

Chapter 8. Testing Newlib and Libgloss
Newlib and libgloss both come with DejaGnu test infrastructures, although as noted in
Section 8.2, the libgloss infrastructure is non-functional.

The total number of tests is modest (24 tests in release 1.18.0). In practice much of the testing
is achieved through the GCC test suite (40,000+ tests) and the GDB test suite (5,000+ tests).

8.1. Testing Newlib

Like all tools, newlib can be tested with a DejaGnu test suite. DejaGnu must be installed on
the test machine.

If you already have testing set up for other tools in the GNU tool chain on your target, then
you can skip the remainder of this section, and just test newlib from the build directory with
the following.

 cd bld-or32
 make check-target-newlib

If this is the first time you have tried testing, then you'll need to set up your system
appropriately. Once this is done, you will be able to test all the GNU tool chain components.

The tests require a target on which to run the tests. This can be a physical machine, or it can
be a simulator for the target architecture.

The details of the target are provided in an expect board configuration file. This is referenced
from the DejaGnu global configuration file. The environment variable DEJAGNU should point to
the global configuration file.

For the OpenRISC 1000 , the global configuration file is in site.exp and a subdirectory, boards
contains or32-sim.exp, which is the board configuration file for the OpenRISC simulator
target.

The site.exp file has two functions. First, it must add the boards directory to the list of board
directories to search. Secondly, it must ensure that the target triplet name is mapped to the
name of the board configuration file.

This site.exp file can be reused for checking other targets in the GNU tool chain, which may
have a different test suite hierarchy. We cannot therefore just reference the boards directory
relative to the test directory. All we know is that it will be in one of the directories above, and
there is no other boards directory in the hierarchy, so we add all the possible directories. Not
elegant, but effective.

55 Copyright © 2010 Embecosm Limited

#Make sure we look in the right place for the board description files
if ![info exists boards_dir] {
 set boards_dir {}
}

Crude way of finding the boards directory
lappend boards_dir "${tool_root_dir}/../boards"
lappend boards_dir "${tool_root_dir}/../../boards"
lappend boards_dir "${tool_root_dir}/../../../boards"
lappend boards_dir "${tool_root_dir}/../../../../boards"

global target_list
 case "$target_triplet" in {
 { "or32-*-elf" } {
 set target_list { "or32-sim" }
 }
 }

Within the boards directory, the board configuration file, or32-sim.cfg gives all the details
required for the configuration.

The tool chains supported by this board are specified first. In the case of the OpenRISC 1000 ,
only one is supported.

set_board_info target_install {or32-elf}

We then need to load some generic routines, and the generic board configuration.

load_generic_config "sim"
load_base_board_description "basic-sim"

The default settings assume that a program is executed on the target by a command named
run, built in a target specific subdirectory of the top level sim directory. In the case of the
OpenRISC 1000 this directory would be sim/or32.

At a minimum, run takes as argument an executable to run, and returns the exit code from
that executable as its result.

The sim directory is usually distributed as part of GDB. Simulators may be derived from CGEN
specifications of the architecture, or by integrating third party simulators. The latter is the
case for the OpenRISC 1000 .

The default settings for a target are obtained using the setup_sim procedure.

setup_sim or32

The remainder of the file is used to configure variations on the default settings. This is done
using the set_board_info procedure.

The OpenRISC 1000 simulator needs an additional argument, which is a configuration file for
the simulator. We know that file will be in the libgloss target directory and named sim.cfg.

56 Copyright © 2010 Embecosm Limited

We can use the lookfor_file procedure to search up from the current source directory to
locate the file.

set cfg_file [lookfor_file ${srcdir} libgloss/or32/sim.cfg]
set_board_info sim,options "-a \"-f ${cfg_file}\""

A number of helpful procedures make it easy to locate parts of the tool chain and their default
arguments. For the OpenRISC 1000 we make one change, which is to specify -mor32-newlib
for the linker flags, so that the newlib BSP will be used.

process_multilib_options ""
set_board_info compiler "[find_gcc]"
set_board_info cflags "[libgloss_include_flags] [newlib_include_flags]"
set_board_info ldflags "[libgloss_link_flags] -mor32-newlib [newlib_link_flags]"
set_board_info ldscript ""

Not all targets have the same functionality, and the remaining options specify those limitations.
This is a generic board specification, so some of these apply to testing components other than
newlib. The limitations specified will mean that some tests, which are inappropriate do not
run.

For the OpenRISC 1000 we specify that the simulator is fast, that programs it runs cannot be
passed arguments, that it does not support signals (for testing GDB) and that the maximum
stack size is 64KB (for testing GCC).

set_board_info slow_simulator 0
set_board_info noargs 1
set_board_info gdb,nosignals 1
set_board_info gcc,stack_size 65536

We can now set DEJAGNU to point to the global configuration directory, change to the build
directory and run the make command to check newlib.

 export DEJAGNU=`pwd`/site.exp
 cd bld-or32
 make check-target-newlib

The good thing is that this set up is generic across all the GNU tool chain, so all the other
tools can be checked in the same way.

8.1.1. Checking Physical Hardware
The same technique can be used to run the tests against physical hardware rather than a
simulator. The setup of the board configuration is rather more complicated, with considerable
variation for different arrangements.

The detail is beyond the scope of this application note, but is well described in Dan Kegel's
Crosstool project [2].

8.2. Testing Libgloss
In principle, having set up newlib testing, testing libgloss should be as simple as:

57 Copyright © 2010 Embecosm Limited

 cd bld-or32
 make check-target-libgloss

Unfortunately, the current newlib release (at the time of writing 1.18.0) does not implement
testing for libgloss. The testsuite subdirectory exists, but the code to configure it is currently
commented out in configure.in.

It should not be difficult to build the infrastructure. However as noted at the start of this
chapter, testing of newlib and libgloss is as much achieved through GCC and GDB testing
as through the modest number of tests within newlib

58 Copyright © 2010 Embecosm Limited

Chapter 9. Summary Checklist
This summary can be used as a checklist when creating a new port of newlib. The configuration
and build steps are typically encapsulated in a simple shell script, which builds, tests and
installs the entire GNU tool chain as well as newlib and libgloss

Throughout this checklist, the new target architecture is referred to as target. It is
recommended newlib and libgloss are built as part of a unified source tree including the
newlib distribution (see Section 2.1).

1. Edit newlib/configure.host adding entries for the new target (Section 3.3).
• Decide whether to implement reentrant or non-reentrant system calls and whether

to use namespace clean system call names (Section 3.2).

2. Add a newlib machine subdirectory for the new target, newlib/libc/machine/target
(Section 4.1).
• Modify configure.in in newlib/libc/machine to configure the new target

subdirectory and run autoconf in newlib/libc/machine to regenerate the
configure script (Section 4.1.1).

3. Implement setjmp and longjmp in the target specific machine directory, newlib/libc/
machine/target (Section 4.1.2).
• Copy and modify Makefile.am and configure.in from the fr30 directory and run

aclocal, autoconf and automake in newlib/libc/machine/target to regenerate the
configure script and Makefile template. (Section 4.1.3).

4. Modify newlib header files (Section 4.2).
• Add entries in newlib/libc/include/ieeefp.c (Section 4.2.1)

• Add entry in in newlib/libc/include/setjmp.c (Section 4.2.2)

• Add entries in newlib/libc/include/sys/config.h (Section 4.2.3).

• Optionally add other custom headers in newlib/libc/machine/target/machine
(Section 4.2.4).

5. Add a libgloss platform directory, libgloss/target (Section 5.1).
• Modify libgloss/configure.in to configure the platform subdirectory and

run autoconf in the libgloss directory to regenerate the configure script
(Section 5.1.1).

6. Implement the Board Support Package(s) for the target (Chapter 5).
• Implement the C Runtime start up, crt0.o for each BSP (Section 5.2).

• Implement the environment global variable and 18 system call functions for each
BSP following the convention namespace and reentrancy conventions specified in
newlib/configure.host (Section 5.3 and Section 5.4).

• Create libgloss/target/Makefile.in and libgloss/target/configure.ac, based
on the versions in the libgloss/libnosys directory and run aclocal and autoconf
in libgloss/target (Section 5.5).

7. If necessary update libgloss/libnosys/configure.in to indicate the target is using
namespace clean system calls and run autoconf in libgloss/libnosys (Section 5.6).

8. Modify GCC for newlib (Section 7.2).

59 Copyright © 2010 Embecosm Limited

• Optionally add target specific option(s) to specify newlib BSP(s) (Section 7.2.1).

• Optionally specify the location of newlib headers, the BSP C runtime start up file
and the newlib libraries, if they have been moved from their standard locations
and/or names (Section 7.2.2)

• Specify the libgloss BSP library to be linked, ensuring malloc and free are linked
in if required (the section called “ Adding a BSP to the link line. ”).

9. Ensure the linker scripts are suitable for use with newlib (Section 7.3).

10. Configure and build newlib and libgloss (Chapter 6).
• Optionally move the newlib header directory, libraries, C start-up and BSP(s) to

a custom location (Section 7.1).

• Rebuild GCC

• Rebuild ld if any linker scripts have been changed.

11. Test newlib (Section 8.1).

12. Install newlib and libgloss (Chapter 6).
• Reinstall GCC

• Reinstall ld if any linker scripts have been changed.

You should now have a working newlib implementation integrated within your GNU tool chain.

60 Copyright © 2010 Embecosm Limited

Glossary

Application Binary Interface (ABI)
The definition of how registers are used during function call and return for a particular
architecture.

big endian
A multi-byte number representation, in which the most significant byte is placed first (i.e.
at the lowest address) in memory.
See also: little endian

Block Stated by Symbol (BSS)
Universally known by its acronym (the full name is a historical relic), this refers to an area
of storage used for holding static variables and initialized to zero.

Board Support Package (BSP)
The low level interface between an operating system or library and the underlying physical
platform.

little endian
A multi-byte number representation, in which the least significant byte is placed first (i.e.
at the lowest address) in memory.
See also: big endian

reentrant
A function which is reentrant may be safely called from another thread of control while an
initial thread's flow of control is still within the function.
In general a function will be reentrant if it changes no static state.

special purpose register (SPR)
A set of up to 216 32-bit registers used to hold additional information controlling the
operation of the OpenRISC 1000

supervision register
An OpenRISC 1000 special purpose register holding information about the most recent
test result, whether the processor is in supervisor mode, and whether certain functions
(cache etc) are enabled.
See also: special purpose register

61 Copyright © 2010 Embecosm Limited

References
[1] The Red Hat Newlib C Library Available at sourceware.org/newlib/libc.html.

[2] The Crosstool Project, Dan Kegel. Available at www.kegel.com/crosstool.

http://sourceware.org/newlib/libc.html
http://www.kegel.com/crosstool/

	Howto: Porting newlib
	Table of Contents
	Chapter 1. Introduction
	1.1. Target Audience
	1.2. Examples
	1.3. Further information
	1.4. About Embecosm Application Notes

	Chapter 2. newlib within the GNU Tool Chain
	2.1. The Unified Source Tree
	2.1.1. Incorporating Newlib within the Tool Chain Build

	Chapter 3. Overview of newlib
	3.1. The relationship between libgloss and newlib
	3.2. The C Namespace and Reentrant Functions
	3.3. Adding a new Target to Newlib
	3.3.1. Extending configure.host for a New Target

	Chapter 4. Modifying newlib
	4.1. The Machine Directory
	4.1.1. Updating the Main Machine Directory Configuration files
	4.1.2. Implementing the setjmp and longjmp functions.
	4.1.3. Updating the Target Specific Machine Directory Configuration files

	4.2. Changing Headers
	4.2.1. IEEE Floating Point
	4.2.2. setjmp Buffer Size
	4.2.3. Miscellaneous System Definitions
	4.2.4. Overriding Other Header Files

	Chapter 5. Modifying libgloss
	5.1. The Platform Directory
	5.1.1. Ensuring the Platform Directory is Configured

	5.2. The C Runtime Initialization, crt0.o
	5.2.1. Exception vector setup
	5.2.2. The _start Function and Stack Initialization
	5.2.3. Cache Initialization
	5.2.4. Clearing BSS
	5.2.5. Constructor and Destructor Handling
	5.2.6. C Initialization Functions
	5.2.7. Invoking the main program

	5.3. Standard System Call Implementations
	5.3.1. Error Handling
	5.3.2. The Global Environment, environ
	5.3.3. Exit a program, _exit
	5.3.4. Closing a file, close
	5.3.5. Transfer Control to a New Process, execve
	5.3.6. Create a new process, fork
	5.3.7. Provide the Status of an Open File, fstat
	5.3.8. Get the Current Process ID, getpid
	5.3.9. Determine the Nature of a Stream, isatty
	5.3.10. Send a Signal, kill
	5.3.11. Rename an existing file, link
	5.3.12. Set Position in a File, lseek
	5.3.13. Open a file, open
	5.3.14. Read from a File, read
	5.3.15. Allocate more Heap, sbrk
	5.3.16. Status of a File (by Name), stat
	5.3.17. Provide Process Timing Information, times
	5.3.18. Remove a File's Directory Entry, unlink
	5.3.19. Wait for a Child Process, wait
	5.3.20. Write to a File, write

	5.4. Reentrant System Call Implementations
	5.5. BSP Configuration and Make file;
	5.5.1. configure.in for the BSP
	5.5.2. Makefile.in for the BSP

	5.6. The Default BSP, libnosys

	Chapter 6. Configuring, Building and Installing Newlib and Libgloss
	6.1. Configuring Newlib and Libgloss
	6.2. Building Newlib and Libgloss
	6.3. Testing Newlib and Libgloss
	6.4. Installing Newlib and Libgloss

	Chapter 7. Modifying the GNU Tool Chain
	7.1. Putting Newlib in a Custom Location
	7.2. Changes to GCC
	7.2.1. Adding Machine Specific Options for Newlib
	7.2.2. Updating Spec Definitions
	The Target Specific Installation Directory
	Specifying the header directory.
	Specifying the C Start up File
	Specifying the Newlib library location
	Adding a BSP to the link line.

	7.3. Changes to the GNU Linker

	Chapter 8. Testing Newlib and Libgloss
	8.1. Testing Newlib
	8.1.1. Checking Physical Hardware

	8.2. Testing Libgloss

	Chapter 9. Summary Checklist
	Glossary
	References

