
Open Source Software Meets Open Source Hardware
OpenCores and the OpenRISC 1000

Jeremy Bennett, CEO Embecosm
Julius Baxter, OpenRISC Program Manager, OpenCores.org

17 October 2011

Agenda

 About OpenCores
– licensing

 OpenRISC 1000 architecture
– OpenRISC 1200 implementation

– verification

 OpenRISC 1000 tool chain
– tools, libraries and operating systems

– software development on OpenRISC

 20 minute break (refreshments outside)

 Hands-on session
– installing the software

– bare metal and Linux

 Find out more...

About OpenCores

Copyright © 2011 Embecosm. Freely available under a Creative Commons license 4

Overview of OpenCores

Founded by
Damjan Lampret

1999 2007 2011

OpenRISC 1000
developed

OpenRISC 1000
commercial deployment

Primary support Flextronics Owned by ORSoC AB

131,382 registered users reported
as of 17 October 2011

870 projects as of 17 October 2011

Web: www.opencores.org and www.openrisc.net
IRC: freenode.net, channel #opencores

http://www.opencores.org/

Copyright © 2011 Embecosm. Freely available under a Creative Commons license 5

Licensing Open Source Hardware

 Most OpenCores hardware is LGPL or BSD
– software tools GPL, documentation also GPL (!)

 What does LGPL mean for hardware
– open source obligations apply only to this hardware block
– what is the hardware equivalent of linking?

 OSS licenses don't really work
– consider:

 I take an LGPL hardware design and modify it

 I manufacture a chip from that design

 I sell you one of those chips

– Am I then obliged to give you a copy of the modified Verilog I used?

 There are alternatives based on contract law
– best known are the TAPR OHL and CERN OHL
– tend to be jurisdiction specific

 This is a major barrier to open source hardware growth

The OpenRISC 1000 Architecture

Copyright © 2011 Embecosm. Freely available under a Creative Commons license 7

The OpenRISC 1000 Project

 Objective to develop a family of open source RISC designs
– 32 and 64-bit architectures

– floating point support

– vector operation support

 Key features
– fully free and open source

– linear address space

– register-to-register ALU operations

– two addressing modes

– delayed branches

– Harvard or Stanford memory MMU/cache architecture

– fast context switch

 Looks rather like MIPS or DLX

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 8

The OpenRISC 1200

OpenRISC 1200

Power
Mgmt

Debug
Unit

Tick
Timer

PIC

CPU

Inst
MMU

Inst
Cache

Data
MMU

Data
Cache

J
T
A
G

W
i
s
h
B
o
n
e

W
i
s
h
B
o
n
e

ALU

 32-bit Harvard RISC architecture

– MIPS/DLX like instruction set

– first in OpenRISC 1000 family

– originally developed 1999-2001

 Open source under the

– GNU Lesser General Public License

– allows reuse as a component

 Configurable design

– caches and MMUs optional

– core instruction set

 Source code Verilog 2001

– approx 32k lines of code

 Full GNU tool chain and Linux port

– various RTOS ported as well

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 9

ORPSoC

ORPSoC: OpenRISC Reference Platform
System-on-Chip

OR1200

 Combined reference
implementation and board
adaptations

 Reference implementation –
minimal SoC for processor
testing, development
– compilable into cycle-accurate

model

 Boards ports target multiple
technologies

 Lowers barrier to entry for
OpenRISC-based SoC design
– Push-button compile flow

– Largely utilises open-source EDA
tools

Clock, Reset
management

Memory
Controller

UART

Wish-
bone
Bus

Arbiter

Peripheral A
SoC

Debug
Interface JTAG

TAP

JTAG

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 10

Hardware Development

 Objective is to use an open source EDA tool chain
– back end tools for FGPA all proprietary

 free (as in beer) versions available

– front end tools now have open source alternatives

 OpenRISC 1000 simulation models
– Or1ksim: golden reference ISS

 C/SystemC interpreting ISS, 2-5 MIPS

– Verilator cycle accurate model from the Verilog RTL
 130kHz in C++ or SystemC

– Icarus Verilog event driven simulation
 1.4kHz, 50x slower than commercial alternatives

 All OpenRISC 1000 simulation models suitable for SW use
– all support GDB debug interface

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 11

OR1200 Verification
1999-2001

 Test bench and DUT simulated using Icarus Verilog
– Open source event driven simulator

– Approximately 20-50 times slower than NC/VCS/ModelSim

– 1.4kHz on a basic Core2 Duo

 Test by running programs in C and assembler
– 13 different test programs

 Limitations
– not exhaustive

– no coverage metrics

– not consistent with the golden reference model

Needs ImprovementNeeds Improvement

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 12

OVM Verification of the OR1200

 MSc by Waqas Ahmed, KTH, Stockholm
 Criteria

– does PC update correctly?
– does status update correctly?
– does exception save context correctly?
– is data stored to the correct memory address?
– are results stored correctly in registers?

 Compare behavior of RTL against Or1ksim
– constrained random generation of scenarios

 Provide SystemVerilog wrappers
– for Or1ksim use DPI to SystemC interface

 Results:
– l.jr/l.jalr to unaligned address

– l.addic and l.lws missing in DUV

– l.macrc/l.ror/l.rori missing from Or1ksim

– 20 instructions had errors

– most coverage targets achieved

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 13

More Hardware Verification

There is another way...

(to be continued later)

The OpenRISC 1000 Tool Chain

The Software Tool Chain

 A standard GNU tool chain
– binutils 2.20.1

– gcc 4.5.1

– gdb 7.3 (for BCS use only!)

– C and C++ language support

 Library support
– static libraries only

– newlib 1.18.0 for bare metal (or32-elf-*)

– uClibc 0.9.32 for Linux applications (or32-linux-*)

 Testing
– regression tested using Or1ksim (both tool chains)

– or32-linux-* regression tested on hardware

– or32-elf-* regression tested on a Verilator model

Board and OS Support

 Boards with BSP implementations
– Or1ksim

– DE-nano

– Terasic DE-2

 RTOS support
– FreeRTOS, RTEMS and eCos all ported

 Linux support
– adopted into Linux 3.1 kernel mainline

– some limitations (kernel debug, ptrace)

– BusyBox as application environment

 Debug interfaces
– JTAG for bare metal

– gdbserver over Ethernet for Linux applications

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 17

Software Development
Remote Connection to GDB

GDB
RSP

Server
I/F

TCP/IP

RSP

USB JTAG

(gdb) target remote :51000(gdb) target remote :51000

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 18

Remote Connection to SystemC

(gdb) target remote :51000(gdb) target remote :51000

GDB
RSP

Server

TCP/IP

RSP

SystemC

I/F

SystemC
Model

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 19

SystemC TLM JTAG InterfaceSystemC TLM JTAG Interface

Unified SystemC Debug

Hand-written
TLM

Simulation or
CA model

Emulation
or FPGA

Silicon

Debugger
(GDB)

Firmware World Hardware World

TLM 2.0
JTAG Model

JTAG
simulation

JTAG
driver

JTAG
driver

Debugger Protocol
(GDB RSP)

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 20

More Hardware Verification

There is another way...

(continued)

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 21

Comparative Regression Testing
of the OpenRISC 1200

 === gcc Summary ===

of expected passes 52753
of unexpected failures 152
of expected failures 77
of unresolved testcases 122
of unsupported tests 716

Golden SystemC TLM Model

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 22

Comparative Regression Testing
of the OpenRISC 1200

 === gcc Summary ===

of expected passes 52753
of unexpected failures 152
of expected failures 77
of unresolved testcases 122
of unsupported tests 716

 === gcc Summary ===

of expected passes 52677
of unexpected failures 228
of expected failures 77
of unresolved testcases 122
of unsupported tests 716

Golden SystemC TLM Model Verilator SystemC RTL Model

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 23

Comparative Regression Testing
of the OpenRISC 1200

 === gcc Summary ===

of expected passes 52753
of unexpected failures 152
of expected failures 77
of unresolved testcases 122
of unsupported tests 716

 === gcc Summary ===

of expected passes 52677
of unexpected failures 228
of expected failures 77
of unresolved testcases 122
of unsupported tests 716

Golden SystemC TLM Model Verilator SystemC RTL Model

 We can identify two types of problem
– tests which fail due to timing out with RTL, but not due to slower model

– tests which give a different result with RTL

 These are candidates for possible RTL errors

 Used commercially by Adapteva Inc
– 50-60 RTL errors eliminated pre-tape out

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 24

Test Failure Examples

 gcc.c-torture/execute/20011008-3.c execution, -O0
– this test just needs more time

 gcc.c-torture/execute/20020402-3.c execution, -Os
– this test doesn't complete in 2 hours

– sibling tests take 200k cycles

– BUG???

 gcc.c-torture/execute/20090113-1.c execution, -O2
– RTL test fails with bus error exception

– BUG???

Practical Demonstration

Practical Demonstrations

 Three strands

 Using OpenRISC bare metal on an FPGA
– Jeremy Bennett

 Using OpenRISC with Linux on an FPGA
– Julius Baxter

 Using OpenRISC on Or1ksim
– Everyone!

– both native and Linux

Installation: Preparation

 DVD/USB contains source code for
– Verilog RTL and testbench for OpenRISC 1200 and ORPSoC

– Or1ksim, the architectural simulator

– The GNU tool chain (binutils, gcc and gdb)

– newlib and uClibc libraries

– Linux kernel and BusyBox

– Assorted scripts

– Example program (hello.c)

 Ensure you have the following installed
– native GNU tool chain (usually standard)

– install the following packages if not already present
sudo yum install gmp-devel
sudo yum install mpfr-devel
sudo yum install libmpc-devel

Installation: GNU Tool Chains

 Preparation
– copy everything from the DVD/USB to your local disc
– untar the packages in the toolchain directory
– decide where to install Or1ksim and the GNU toolchain
– default /opt/or1ksim-new and /opt/or32-new

 Build or1ksim and GNU tool chains
./bld-or1ksim.sh –-prefix /opt/or1ksim-new
./bld-all.sh --prefix /opt/or32-new \
 –-or1ksim-dir /opt/or1ksim-new

 Add tools to the PATH
export PATH=/opt/or32-new/bin:/opt/or1ksim-new/bin:$PATH

– or
setenv PATH /opt/or32-new/bin:/opt/or1ksim-new/bin:$PATH

 You may also need
sudo ln -s /lib/libncurses.so.5.7 /lib/libtinfo.so.5

Installation: Linux and BusyBox

 Unpack the linux initramfs
cd linux-2.6.39
tar jxf initramfs.tar.bz2
cd ..

 Configure BusyBox
cd busybox-1.17.3
make menuconfig

– under BusyBox Settings → Build Options
 Build BusyBox as static binary setting: [*] (Y)
 Cross Compiler prefix setting: or32-linux-

– under BusyBox Settings → Installation Options
 BusyBox installation prefix setting:

installation_root/linux-2.6.39/arch/openrisc/support/initramfs
cd ..

 Build Linux and BusyBox
./bld-bb.sh

Bare metal example

 Build the example
cd examples
or32-elf-gcc hello.c -o hello

 Run the example
or32-elf-sim --memory=8M hello

 Run the example using GDB. In first window
or32-elf-sim --memory=8M --srv=51000

 In second window
cd examples
or32-elf-gdb hello
(gdb) target remote :51000
(gdb) load
(gdb) break main
(gdb) continue
(gdb) backtrace
(gdb) continue

Bare metal debugging

 Simulation as remote debugging target
– Run the example using GDB. In first window

or32-elf-sim --memory=8M --srv=51000

– In second window
cd examples
or32-elf-gdb hello
(gdb) target remote :51000
(gdb) load
(gdb) break main
(gdb) continue
(gdb) backtrace
(gdb) continue

 Using simulator built into GDB
or32-elf-gdb hello
(gdb) target sim
(gdb) load
(gdb) etc...

Running Linux

 Edit arch/openrisc/or1ksim.cfg
– find section ethernet

– set enabled to 0

– comment out the sockif line

 Run kernel and BusyBox
cd linux-2.6.39
or32-elf-sim -f arch/openrisc/or1ksim.cfg vmlinux

 Run kernel with Ethernet
– use TUN/TAP to create a virtual IP interface, which Or1ksim can use

– requires typically openvpn and/or bridge-utils installed

– scripts brstart.sh or brstart_static.sh can be used to set up bridge.

or32-elf-sim -f arch/openrisc/or1ksim.cfg vmlinux

– demonstration only today, homework for the audience

FPGA Bare Metal Demonstration

 System details:
– ORSoC AB board

 Actel A3P1000 FPGA

– debug interface
 ORSoC USB debug cable

 or-debug-proxy

 Software:
– bootloader from flash

– “Hello World” program
 download using GDB

 Run or-debug-proxy
– /dev/ttyUSB0 for JTAG

– /dev/ttyUSB1 for UART

 Connect picocom to
/dev/ttyUSB0
– picocom --b 115200 --p n

--d 8 /dev/ttyUSB0

FPGA With Linux Demonstration

 System details:
– ORPSoC Xilinx ML501 (Virtex

5) board port
 OR1200

– 32KB Insn/Data cache

– 66MHz

– FPU, MAC enabled

 DDR2, CFI flash

 10/100 Ethernet

 UART, SPI, I2C, GPIO

 Uses about 50% of LX50's
resources

 All RTL source open and
available

– Debug interface:
 ORSoC USB debug cable

 OpenOCD as proxy

 Software:
– U-boot bootloader from flash

 2011.09-rc2

 Boot kernel from flash

 Boot with TFTP download

– Linux kernel port
 2.6.39

 BusyBox

 Currently a little bit limited due
to lack of shared
library/dynamic linking
support.

Find out More

Find out More

 The OpenCores website

– www.opencores.org

 The Open Source Hardware User Group (OSHUG)

– www.oshug.org

– evening meetings each month in London

– first UK Open Source Hardware camp, 27 October

 FSCONS

– keynote by Richard Stallman

– OpenRISC workshop

 Commercial support

– Embecosm – www.embecosm.com

Copyright © 2010 Embecosm. Freely available under a Creative Commons license 37

Thank You

Thank You

www.embecosm.com

www.opencores.org

	Productive Development Throughout the SoC Lifecycle Comprehensive Tools from Architectural Model to Final Silicon
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Thank You

