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Has  downloading  and  running  the  latest  applications  also  drained  your  smartphone's 
battery? In this article we look at the great potential of making software engineering more 
energy  aware. We start at the hardware.

In recent years, hardware designers have become very good at low power design. Multiple 
voltage domains, clock gating, dynamic frequency scaling and a host of other techniques 
have helped reduce power consumption. It is a never ending battle as dimensions shrink to 
just 10s of atoms, and leakage becomes an ever more pressing problem.

For a long time, energy efficiency has been seen as a hardware problem. Yet software can 
undo all the design efficiency at a stroke. Famously a Linux implementation wasted 70-90% 
of its power, simply because a blinking cursor woke up the entire system several times a 
second [1]. One of the authors (Bennett) was involved in a commercial project, where the 
design team found they had to increase clock frequency (and hence power consumption) 
three fold because a standard audio codec caused excessive processor stalls through cache 
conflicts. That project was canceled shortly afterwards.

There are three main factors contributing to power loss:

• static leakage—mitigated by reducing voltage;

• dynamic leakage—mitigated by reducing frequency and switching; and

• number of components—mitigated through smaller, simpler silicon and less memory.

Note in particular that reducing voltage is a quadratic gain, and that reducing frequency is a 
double gain because it also allows voltage to be reduced. With chip voltages ranging from 
0.6V to 1.5V, there is the potential of 10x gain to be had.

How to tackle energy efficiency at a system level has been known for well over a decade. In 
their 1997 paper [2], Roy and Johnson summed up how to align software design decisions 
with energy efficiency as a design goal. Their key steps are (in the given order):

• choose the best algorithm to fit the hardware;

• manage memory size and memory access through algorithm tuning;

• optimize for performance, making best use of parallelism;

• use hardware support for power management; and

• generate code that minimizes switching in the CPU and data path.

Seeing that this understanding already existed back in 1997, it is perhaps surprising to see 
that  no major  advances  have  been made since  then.  Much of  the  current  literature  is 
focused on advancing one or several of the above steps with marginal returns. In the context 
of multi-threaded software running on multi-core hardware many of these approaches no 
longer work. A step change is needed to push technology towards the 10x improvements 
that result in a noticeable difference in practice. This requires a fundamental  re-evaluation 
of system design methods in the context of energy efficiency.

Traditionally,  researchers  and  engineers  work  within  one  or  perhaps  two  layers  of  the 
system stack  with  very  limited  overlap,  e.g.  software  engineers,  computer  architects  or 
hardware  designers.  However,  energy-aware  computing  is  a  challenge  that  requires 
investigating  the  entire  system  stack  from  application  software  and  algorithms,  via 
programming languages, compilers, instruction sets and micro architectures, through to the 
design and manufacture of the hardware. In 2010 Mentor Graphics and LSI Logic identified 
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that, while optimization at synthesis level could potentially save 5% power, optimization at 
architectural level could save 80%. But even then they did not consider the potential for 
savings even further up in the compiler, programming languages and software. An updated 
version of their graph might look like this:

After Mentor Graphics and LSI Logic 2010

This is because energy is consumed by the hardware performing computations, but the 
control over the computation ultimately lies within the software and algorithms, i.e.  the 
applications running on the hardware. Industry is waking up at last to the fact that, while 
hardware can be designed to save a modest amount of energy, the potential for savings is far 
greater at the higher levels of abstraction in the system stack [3].

The greatest savings are expected from energy-consumption-aware software. Addressing the 
challenge  of  energy-aware  computing  requires  collaboration  between  engineers  and 
researchers from all the above named areas and a good understanding of the applications 
that will drive software and hardware development in the future.

Any  engineering  team must  work  together  across  hardware  and software  disciplines  to 
address energy issues throughout the entire system stack.

• Synthesis/RTL.  This  comes  late  in  the  process,  and  power  estimation  tools  while 
accurate are fabulously slow (weeks to run for a big chip).

• Functional block level. Tools like Wattch [4] offer architectural power estimation that 
runs 1000x faster then synthesis tools, yet is accurate to within 10% of layout level 
estimation tools.
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• Instruction  Set  Architecture.  Minimizing  the  Hamming  distance  between  pairs  of 
instructions, and partitioning register files are clear wins here.

• Compiler. Profile directed optimization is essential to be able to take advantage of both 
models of hardware power and (once silicon is available) measurements of power. The 
EU funded MILEPOST project [5], in which the UK was a big player offers an ideal 
framework for this.

• Programming languages. Annotations to specify power consumption budgets during 
programming need to become integrated parts of new programming languages, which 
will be dedicated to giving programmers full control over software power consumption. 
Additionally,  programmers  may  decide  to  trade  accuracy  for  power  by  utilizing 
advanced approximate  data  types  [6]  that  take  advantage  of  new optimizations in 
hardware [7].

• Algorithms and applications. The tool chain must allow early design space exploration. 
In the first instance a programmer must get a report on the power consumption of the 
program they write. Longer term, the tools should be able to optimize for power, just 
as today they optimize for time and/or space.

In summary, there is huge potential for power savings when looking at the entire system 
stack, especially at the higher levels. To unlock this potential, energy efficiency must be 
promoted to a first class system design goal. We can identify some key steps to achieve 
this:

• We need to bridge the gap between hardware and software design. This requires a 
change of culture in engineering teams and tool providers. 

• New  tools are required. Initially to communicate power consumption to developers, 
especially software engineers.  Later,  to automatically optimize so that the specified 
power  budgets  are  being  met.  Tool  providers  will  play  a  key  role  in  bridging  the 
hardware-software gap.

• Education and training of engineers will need extending. Just as today a hardware 
designer  knows  how  to  optimize  for  area,  performance  or  power,  future  software 
engineers will need to work in a multi-dimensional design space that includes power 
in  addition  to  traditional  software  design  metrics  such  as  memory  usage  and 
performance.

• A critical part to drive this forward is raising end user awareness. If end users made 
non-functional requirements such as energy budgets part of the specification for an 
application, then engineers would need to design to meet these expectations from the 
start.

Making  system  design  more  energy  efficient  is  a  considerable  challenge  for  both  the 
engineering and the research community. This challenge calls for collaboration across the 
board. We have a long way to go. So, next time the software drains your battery, you know 
we've still  not quite made it.  When we can select from new apps based on their energy 
rating, similar to the way we buy light bulbs or white goods today, and when smartphones 
don't need recharging for weeks, then we'll be almost there.
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