
The Software Drained my Battery
Jeremy Bennett, Embecosm

Kerstin Eder, University of Bristol, Department of Computer Science

Has downloading and running the latest applications also drained your smartphone's
battery? In this article we look at the great potential of making software engineering more
energy aware. We start at the hardware.

In recent years, hardware designers have become very good at low power design. Multiple
voltage domains, clock gating, dynamic frequency scaling and a host of other techniques
have helped reduce power consumption. It is a never ending battle as dimensions shrink to
just 10s of atoms, and leakage becomes an ever more pressing problem.

For a long time, energy efficiency has been seen as a hardware problem. Yet software can
undo all the design efficiency at a stroke. Famously a Linux implementation wasted 70-90%
of its power, simply because a blinking cursor woke up the entire system several times a
second [1]. One of the authors (Bennett) was involved in a commercial project, where the
design team found they had to increase clock frequency (and hence power consumption)
three fold because a standard audio codec caused excessive processor stalls through cache
conflicts. That project was canceled shortly afterwards.

There are three main factors contributing to power loss:

• static leakage—mitigated by reducing voltage;

• dynamic leakage—mitigated by reducing frequency and switching; and

• number of components—mitigated through smaller, simpler silicon and less memory.

Note in particular that reducing voltage is a quadratic gain, and that reducing frequency is a
double gain because it also allows voltage to be reduced. With chip voltages ranging from
0.6V to 1.5V, there is the potential of 10x gain to be had.

How to tackle energy efficiency at a system level has been known for well over a decade. In
their 1997 paper [2], Roy and Johnson summed up how to align software design decisions
with energy efficiency as a design goal. Their key steps are (in the given order):

• choose the best algorithm to fit the hardware;

• manage memory size and memory access through algorithm tuning;

• optimize for performance, making best use of parallelism;

• use hardware support for power management; and

• generate code that minimizes switching in the CPU and data path.

Seeing that this understanding already existed back in 1997, it is perhaps surprising to see
that no major advances have been made since then. Much of the current literature is
focused on advancing one or several of the above steps with marginal returns. In the context
of multi-threaded software running on multi-core hardware many of these approaches no
longer work. A step change is needed to push technology towards the 10x improvements
that result in a noticeable difference in practice. This requires a fundamental re-evaluation
of system design methods in the context of energy efficiency.

Traditionally, researchers and engineers work within one or perhaps two layers of the
system stack with very limited overlap, e.g. software engineers, computer architects or
hardware designers. However, energy-aware computing is a challenge that requires
investigating the entire system stack from application software and algorithms, via
programming languages, compilers, instruction sets and micro architectures, through to the
design and manufacture of the hardware. In 2010 Mentor Graphics and LSI Logic identified

1

that, while optimization at synthesis level could potentially save 5% power, optimization at
architectural level could save 80%. But even then they did not consider the potential for
savings even further up in the compiler, programming languages and software. An updated
version of their graph might look like this:

After Mentor Graphics and LSI Logic 2010

This is because energy is consumed by the hardware performing computations, but the
control over the computation ultimately lies within the software and algorithms, i.e. the
applications running on the hardware. Industry is waking up at last to the fact that, while
hardware can be designed to save a modest amount of energy, the potential for savings is far
greater at the higher levels of abstraction in the system stack [3].

The greatest savings are expected from energy-consumption-aware software. Addressing the
challenge of energy-aware computing requires collaboration between engineers and
researchers from all the above named areas and a good understanding of the applications
that will drive software and hardware development in the future.

Any engineering team must work together across hardware and software disciplines to
address energy issues throughout the entire system stack.

• Synthesis/RTL. This comes late in the process, and power estimation tools while
accurate are fabulously slow (weeks to run for a big chip).

• Functional block level. Tools like Wattch [4] offer architectural power estimation that
runs 1000x faster then synthesis tools, yet is accurate to within 10% of layout level
estimation tools.

2

• Instruction Set Architecture. Minimizing the Hamming distance between pairs of
instructions, and partitioning register files are clear wins here.

• Compiler. Profile directed optimization is essential to be able to take advantage of both
models of hardware power and (once silicon is available) measurements of power. The
EU funded MILEPOST project [5], in which the UK was a big player offers an ideal
framework for this.

• Programming languages. Annotations to specify power consumption budgets during
programming need to become integrated parts of new programming languages, which
will be dedicated to giving programmers full control over software power consumption.
Additionally, programmers may decide to trade accuracy for power by utilizing
advanced approximate data types [6] that take advantage of new optimizations in
hardware [7].

• Algorithms and applications. The tool chain must allow early design space exploration.
In the first instance a programmer must get a report on the power consumption of the
program they write. Longer term, the tools should be able to optimize for power, just
as today they optimize for time and/or space.

In summary, there is huge potential for power savings when looking at the entire system
stack, especially at the higher levels. To unlock this potential, energy efficiency must be
promoted to a first class system design goal. We can identify some key steps to achieve
this:

• We need to bridge the gap between hardware and software design. This requires a
change of culture in engineering teams and tool providers.

• New tools are required. Initially to communicate power consumption to developers,
especially software engineers. Later, to automatically optimize so that the specified
power budgets are being met. Tool providers will play a key role in bridging the
hardware-software gap.

• Education and training of engineers will need extending. Just as today a hardware
designer knows how to optimize for area, performance or power, future software
engineers will need to work in a multi-dimensional design space that includes power
in addition to traditional software design metrics such as memory usage and
performance.

• A critical part to drive this forward is raising end user awareness. If end users made
non-functional requirements such as energy budgets part of the specification for an
application, then engineers would need to design to meet these expectations from the
start.

Making system design more energy efficient is a considerable challenge for both the
engineering and the research community. This challenge calls for collaboration across the
board. We have a long way to go. So, next time the software drains your battery, you know
we've still not quite made it. When we can select from new apps based on their energy
rating, similar to the way we buy light bulbs or white goods today, and when smartphones
don't need recharging for weeks, then we'll be almost there.

References

1 E. Sperling and P. Chatterjee. 16 June, 2011. The Tao of Software. Chip Design
Magazine Low Power Engineering online community blog post.
chipdesignmag.com/lpd/blog/2011/06/16/the-tao-of-software.

2 K. Roy and M.C. Johnson. 1997. Software design for low power. In W. Nebel and J.
Mermet (Eds.) Low power design in deep submicron electronics. Kluwer Nato Advanced
Science Institutes Series, Vol. 337, Norwell, MA, USA, pp 433-460.

3 Chris Edwards. 15-21 June, 2011. Lack of software support marks the low power
scorecard at DAC. Electronics Weekly.

3

http://chipdesignmag.com/lpd/blog/2011/06/16/the-tao-of-software/

4 D. Brooks, V. Tiwari, M. Martonosi, “Wattch: A framework for architecture-level power
analysis and optimizations,” Proc. 27th International Symposium on Computer
Architecture (ISCA), pp. 83-94, 2000.

5 Fursin et al. MILEPOST GCC: Machine learning based research compiler. GCC
Summit, Ottawa, Canada, 2008.

6 A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze and D. Grossman,
“EnerJ: Approximate Data Types for Safe and General Low-Power Computation” In
Proc. of PLDI, June 2011.

7 J.Y.F. Tong, D. Nagle and R.A. Rutenbar, Reducing Power by Optimizing the Necessary
Precision/Range of Floating-Point Arithmetic. IEEE Transactions on VLSI Systems, 8(3),
pp 273-286, June 2000.

About the Authors

Dr Jeremy Bennett is Chief Executive of Embecosm Limited. Embecosm
(www.embecosm.com) provides open source services, tools and models to facilitate
embedded software development with complex systems-on-chip. Contact him at
jeremy.bennett@embecosm.com.

Dr Kerstin Eder is a Senior Lecturer in Computer Science at the University of Bristol,
specializing in Design Verification. During 2011 she has been on a Royal Academy of
Engineering funded Fellowship at XMOS in Bristol, investigating “State of the Art Power-
Aware System Design”. She gratefully acknowledges the support of both the RAE and XMOS
in carrying out the work described here. Contact her at kerstin.eder@bristol.ac.uk.

This article was originally published in the NMI Yearbook 2011-12.

This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit creativecommons.org/licenses/by/2.0/uk/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:

• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:

• Attribution. You must give the original authors, Jeremy Bennett and Kerstin Eder,
credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright
holders, Embecosm and Kerstin Eder; and

• Nothing in this license impairs or restricts the author's moral rights.

4

mailto:kerstin.eder@bristol.ac.uk
http://creativecommons.org/licenses/by/2.0/uk/
mailto:jeremy.bennett@embecosm.com
http://www.embecosm.com/

